Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma

Abstract

Biopsies from patients with cutaneous T-cell lymphoma (CTCL) exhibit stage-dependent increase in angiogenesis. However, the molecular mechanisms responsible for the increased angiogenesis are unknown. Here we show that malignant CTCL T cells spontaneously produce the potent angiogenic protein, vascular endothelial growth factor (VEGF). Dermal infiltrates of CTCL lesions show frequent and intense staining with anti-VEGF antibody, indicating a steady, high production of VEGF in vivo. Moreover, the VEGF production is associated with constitutive activity of Janus kinase 3 (Jak3) and the c-Jun N-terminal kinases (JNKs). Sp600125, an inhibitor of JNK activity and activator protein-1 (AP-1) binding to the VEGF promoter, downregulates the VEGF production without affecting Jak3 activity. Similarly, inhibitors of Jak3 inhibit the VEGF production without affecting JNK activity. Downregulation of Stat3 with small interfering RNA has no effect, whereas curcumin, an inhibitor of both Jak3 and the JNKs, almost completely blocks the VEGF production. In conclusion, we provide evidence of VEGF production in CTCL, which is promoted by aberrant activation of Jak3 and the JNKs. Inhibition of VEGF-inducing pathways or neutralization of VEGF itself could represent novel therapeutic modalities in CTCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest 2005; 115: 798–812.

    Article  CAS  Google Scholar 

  2. Foss F . Mycosis fungoides and the Sezary syndrome. Curr Opin Oncol 2004; 16: 421–428.

    Article  Google Scholar 

  3. Vacca A, Moretti S, Ribatti D, Pellegrino A, Pimpinelli N, Bianchi B et al. Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. Eur J Cancer 1997; 33: 1685–1692.

    Article  CAS  Google Scholar 

  4. Mazur G, Wozniak Z, Wrobel T, Maj J, Kuliczkowski K . Increased angiogenesis in cutaneous T-cell lymphomas. Pathol Oncol Res 2004; 10: 34–36.

    Article  Google Scholar 

  5. Folkman J, Watson K, Ingber D, Hanahan D . Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58–61.

    Article  CAS  Google Scholar 

  6. Ferrara N . Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004; 25: 581–611.

    Article  CAS  Google Scholar 

  7. Xie K, Wei D, Shi Q, Huang S . Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev 2004; 15: 297–324.

    Article  CAS  Google Scholar 

  8. Pages G, Pouyssegur J . Transcriptional regulation of the vascular endothelial growth factor gene – a concert of activating factors. Cardiovasc Res 2005; 65: 564–573.

    Article  CAS  Google Scholar 

  9. Kaltoft K, Bisballe S, Dyrberg T, Boel E, Rasmussen PB, Thestrup-Pedersen K . Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides. In vitro Cell Dev Biol 1992; 28A: 161–167.

    Article  CAS  Google Scholar 

  10. Davis TH, Morton CC, Miller-Cassman R, Balk SP, Kadin ME . Hodgkin's disease, lymphomatoid papulosis, and cutaneous T-cell lymphoma derived from a common T-cell clone. N Engl J Med 1992; 326: 1115–1122.

    Article  CAS  Google Scholar 

  11. Wasik MA, Seldin DC, Butmarc JR, Gertz R, Marti R, Maslinski W et al. Analysis of IL-2, IL-4 and their receptors in clonally-related cell lines derived from a patient with a progressive cutaneous T-cell lymphoproliferative disorder. Leuk Lymphoma 1996; 23: 125–136.

    Article  CAS  Google Scholar 

  12. Kaltoft K, Bisballe S, Rasmussen HF, Thestrup-Pedersen K, Thomsen K, Sterry W . A continuous T-cell line from a patient with Sezary syndrome. Arch Dermatol Res 1987; 279: 293–298.

    Article  CAS  Google Scholar 

  13. Sommer VH, Clemmensen OJ, Nielsen O, Wasik M, Lovato P, Brender C et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 2004; 18: 1288–1295.

    Article  CAS  Google Scholar 

  14. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991; 266: 11947–11954.

    CAS  Google Scholar 

  15. Shi Q, Le X, Abbruzzese JL, Peng Z, Qian CN, Tang H et al. Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res 2001; 61: 4143–4154.

    CAS  PubMed  Google Scholar 

  16. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21: 2000–2008.

    Article  CAS  Google Scholar 

  17. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604–4613.

    Article  CAS  Google Scholar 

  18. Damert A, Ikeda E, Risau W . Activator-protein-1 binding potentiates the hypoxia-inducible factor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. Biochem J 1997; 327 (Part 2): 419–423.

    Article  CAS  Google Scholar 

  19. Nielsen M, Kaltoft K, Nordahl M, Ropke C, Geisler C, Mustelin T et al. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci USA 1997; 94: 6764–6769.

    Article  CAS  Google Scholar 

  20. Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 2001; 15: 787–793.

    Article  CAS  Google Scholar 

  21. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 2003; 22: 319–329.

    Article  CAS  Google Scholar 

  22. Minet E, Michel G, Mottet D, Piret JP, Barbieux A, Raes M et al. c-JUN gene induction and AP-1 activity is regulated by a JNK-dependent pathway in hypoxic HepG2 cells. Exp Cell Res 2001; 265: 114–124.

    Article  CAS  Google Scholar 

  23. Werlen G, Jacinto E, Xia Y, Karin M . Calcineurin preferentially synergizes with PKC-theta to activate JNK and IL-2 promoter in T lymphocytes. EMBO J 1998; 17: 3101–3111.

    Article  CAS  Google Scholar 

  24. Sharma RA, Gescher AJ, Steward WP . Curcumin: the story so far. Eur J Cancer 2005; 41: 1955–1968.

    Article  CAS  Google Scholar 

  25. Chen YR, Tan TH . Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 1998; 17: 173–178.

    Article  CAS  Google Scholar 

  26. Rajasingh J, Raikwar HP, Muthian G, Johnson C, Bright JJ . Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK–STAT pathway in T cell leukemia. Biochem Biophys Res Commun 2006; 340: 359–368.

    Article  CAS  Google Scholar 

  27. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  CAS  Google Scholar 

  28. Ruiz M, Pettaway C, Song R, Stoeltzing O, Ellis L, Bar-Eli M . Activator protein 2alpha inhibits tumorigenicity and represses vascular endothelial growth factor transcription in prostate cancer cells. Cancer Res 2004; 64: 631–638.

    Article  CAS  Google Scholar 

  29. Heimberger AB, McGary EC, Suki D, Ruiz M, Wang H, Fuller GN et al. Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. Clin Cancer Res 2005; 11: 267–272.

    Article  CAS  Google Scholar 

  30. Pages G, Berra E, Milanini J, Levy AP, Pouyssegur J . Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem 2000; 275: 26484–26491.

    Article  CAS  Google Scholar 

  31. Nielsen M, Nissen MH, Gerwien J, Zocca MB, Rasmussen HM, Nakajima K et al. Spontaneous interleukin-5 production in cutaneous T-cell lymphoma lines is mediated by constitutively activated Stat3. Blood 2002; 99: 973–977.

    Article  CAS  Google Scholar 

  32. Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA . STAT3 induces transcription of DNA methyltransferase 1 (DNMT1) gene in malignant T-lymphocytes. Blood 2006; 108: 1058–1064.

    Article  CAS  Google Scholar 

  33. Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS et al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 2005; 24: 3110–3120.

    Article  CAS  Google Scholar 

  34. Karjalainen JM, Kellokoski JK, Eskelinen MJ, Alhava EM, Kosma VM . Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. J Clin Oncol 1998; 16: 3584–3591.

    Article  CAS  Google Scholar 

  35. Ruiz M, Troncoso P, Bruns C, Bar-Eli M . Activator protein 2alpha transcription factor expression is associated with luminal differentiation and is lost in prostate cancer. Clin Cancer Res 2001; 7: 4086–4095.

    CAS  PubMed  Google Scholar 

  36. Gee JM, Robertson JF, Ellis IO, Nicholson RI, Hurst HC . Immunohistochemical analysis reveals a tumour suppressor-like role for the transcription factor AP-2 in invasive breast cancer. J Pathol 1999; 189: 514–520.

    Article  CAS  Google Scholar 

  37. Ropponen KM, Kellokoski JK, Pirinen RT, Moisio KI, Eskelinen MJ, Alhava EM et al. Expression of transcription factor AP-2 in colorectal adenomas and adenocarcinomas; comparison of immunohistochemistry and in situ hybridisation. J Clin Pathol 2001; 54: 533–538.

    Article  CAS  Google Scholar 

  38. Nyormoi O, Bar-Eli M . Transcriptional regulation of metastasis-related genes in human melanoma. Clin Exp Metast 2003; 20: 251–263.

    Article  CAS  Google Scholar 

  39. Gershenwald JE, Sumner W, Calderone T, Wang Z, Huang S, Bar-Eli M . Dominant-negative transcription factor AP-2 augments SB-2 melanoma tumor growth in vivo. Oncogene 2001; 20: 3363–3375.

    Article  CAS  Google Scholar 

  40. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Article  CAS  Google Scholar 

  41. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001; 21: 2895–2900.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by The Danish Research Councils, The Danish Cancer Society, The Novo Nordic Foundation, Fabrikant Vilhelm Pedersen og Hustrus Mindelegat, Dansk Kræftsforsknings Fond, scholarship from the The Danish Cancer Society (T Krejsgaard), the Deutsche Forschungsgemeinschaft (KFO124) (JC Becker) and Købmand i Odense Johann og Hanne Weimann f. Seedroffs Legat (T Labuda). We express our appreciation to Claudia Siedel for her excellent technical assistance and to Eva-Bettina Bröcker for critical discussions during the evaluation of the immunohistochemistry slides. We also thank K Kaltoft for providing us with the MyLa cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Ødum.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krejsgaard, T., Vetter-Kauczok, C., Woetmann, A. et al. Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia 20, 1759–1766 (2006). https://doi.org/10.1038/sj.leu.2404350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404350

Keywords

This article is cited by

Search

Quick links