Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Regulation of hematopoietic stem cell growth

Abstract

Hematopoietic stem cells (HSC) must balance self-renewal and differentiation to provide sufficient primitive cells to sustain hematopoiesis, while generating more mature cells with specialized capabilities. The enhanced self-renewal capacity of primitive HSCs enables their ability to sustain hematopoiesis throughout decades of life and their ability to repopulate a host when used therapeutically in bone marrow transplantation. However, hematopoietic cell perturbations resulting in unchecked self-renewal participate in leukemogenesis. While mechanisms governing self-renewal are still being uncovered, they are thought to bear relationship to the malignant process in a variety of tumor types and may therefore provide useful therapeutic targets in putative cancer stem cells. This review discusses molecular mechanisms recently defined to participate in HSC governance and highlights features of stem cell interactions with the microenvironment that may help guide therapies directed at HSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    CAS  PubMed  Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gazitt Y, Freytes CO, Callander N, Tsai TW, Alsina M, Anderson J et al. Successful PBSC mobilization with high-dose G-CSF for patients failing a first round of mobilization. J Hematother 1999; 8: 173–183.

    CAS  PubMed  Google Scholar 

  4. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287: 1804–1808.

    CAS  PubMed  Google Scholar 

  5. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  6. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P et al. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 1995; 6: 387–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997; 11: 847–862.

    CAS  PubMed  Google Scholar 

  8. Hunter T, Pines J . Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 1994; 79: 573–582.

    CAS  PubMed  Google Scholar 

  9. Sherr CJ, Roberts JM . Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9: 1149–1163.

    CAS  PubMed  Google Scholar 

  10. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M . Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 2003; 115: 71–82.

    CAS  PubMed  Google Scholar 

  11. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V et al. Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995; 269: 682–685.

    CAS  PubMed  Google Scholar 

  12. Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A et al. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 1995; 267: 1024–1027.

    CAS  PubMed  Google Scholar 

  13. Esposito F, Cuccovillo F, Vanoni M, Cimino F, Anderson CW, Appella E et al. Redox-mediated regulation of p21(waf1/cip1) expression involves a post-transcriptional mechanism and activation of the mitogen-activated protein kinase pathway. Eur J Biochem 1997; 245: 730–737.

    CAS  PubMed  Google Scholar 

  14. Akashi M, Osawa Y, Koeffler HP, Hachiya M . p21WAF1 expression by an activator of protein kinase C is regulated mainly at the post-transcriptional level in cells lacking p53: important role of RNA stabilization. Biochem J 1999; 337 (part 3): 607–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gartel AL, Tyner AL . Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 1999; 246: 280–289.

    CAS  PubMed  Google Scholar 

  16. Hirano M, Hirano K, Nishimura J, Kanaide H . Transcriptional up-regulation of p27(Kip1) during contact-induced growth arrest in vascular endothelial cells. Exp Cell Res 2001; 271: 356–367.

    CAS  PubMed  Google Scholar 

  17. Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT . Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21(Cip1/Waf1) or p27(Kip1). Blood 2001; 98: 3643–3649.

    CAS  PubMed  Google Scholar 

  18. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT . Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 2000; 6: 1235–1240.

    CAS  PubMed  Google Scholar 

  19. Stier S, Cheng T, Forkert R, Lutz C, Dombkowski DM, Zhang JL et al. Ex vivo targeting of p21Cip1/Waf1 permits relative expansion of human hematopoietic stem cells. Blood 2003; 102: 1260–1266.

    CAS  PubMed  Google Scholar 

  20. Hayette S, Thomas X, Bertrand Y, Tigaud I, Callanan M, Thiebaut A et al. Molecular analysis of cyclin-dependent kinase inhibitors in human leukemias. Leukemia 1997; 11: 1696–1699.

    CAS  PubMed  Google Scholar 

  21. Alkarain A, Slingerland J . Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 2004; 6: 13–21.

    CAS  PubMed  Google Scholar 

  22. Chetty R . p27 Protein and cancers of the gastrointestinal tract and liver: an overview. J Clin Gastroenterol 2003; 37: 23–27.

    CAS  PubMed  Google Scholar 

  23. Blain SW, Scher HI, Cordon-Cardo C, Koff A . p27 as a target for cancer therapeutics. Cancer Cell 2003; 3: 111–115.

    CAS  PubMed  Google Scholar 

  24. Slingerland J, Pagano M . Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 2000; 183: 10–17.

    CAS  PubMed  Google Scholar 

  25. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501.

    CAS  PubMed  Google Scholar 

  26. Morrison SJ, Prowse KR, Ho P, Weissman IL . Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 1996; 5: 207–216.

    CAS  PubMed  Google Scholar 

  27. Allsopp RC, Cheshier S, Weissman IL . Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 2001; 193: 917–924.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL . Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 2003; 102: 517–520.

    CAS  PubMed  Google Scholar 

  29. Allsopp RC, Morin GB, Horner JW, DePinho R, Harley CB, Weissman IL . Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med 2003; 9: 369–371.

    CAS  PubMed  Google Scholar 

  30. Giampaolo A, Sterpetti P, Bulgarini D, Samoggia P, Pelosi E, Valtieri M et al. Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. Blood 1994; 84: 3637–3647.

    CAS  PubMed  Google Scholar 

  31. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9: 1753–1765.

    CAS  PubMed  Google Scholar 

  32. Thorsteinsdottir U, Sauvageau G, Humphries RK . Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood 1999; 94: 2605–2612.

    CAS  PubMed  Google Scholar 

  33. Kyba M, Perlingeiro RC, Daley GQ . HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002; 109: 29–37.

    CAS  PubMed  Google Scholar 

  34. Amsellem S, Pflumio F, Bardinet D, Izac B, Charneau P, Romeo PH et al. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med 2003; 9: 1423–1427.

    CAS  PubMed  Google Scholar 

  35. Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G . In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 2003; 9: 1428–1432.

    CAS  PubMed  Google Scholar 

  36. DiMartino JF, Selleri L, Traver D, Firpo MT, Rhee J, Warnke R et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood 2001; 98: 618–626.

    CAS  PubMed  Google Scholar 

  37. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB, Aplan PD . NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 1998; 58: 4269–4273.

    CAS  PubMed  Google Scholar 

  38. Nakamura T, Yamazaki Y, Hatano Y, Miura I . NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15). Blood 1999; 94: 741–747.

    CAS  PubMed  Google Scholar 

  39. Borrow J, Shearman AM, Stanton Jr VP, Becher R, Collins T, Williams AJ et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996; 12: 159–167.

    CAS  PubMed  Google Scholar 

  40. Calvo R, West J, Franklin W, Erickson P, Bemis L, Li E et al. Altered HOX and WNT7A expression in human lung cancer. Proc Natl Acad Sci USA 2000; 97: 12776–12781.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000; 405: 974–978.

    CAS  PubMed  Google Scholar 

  42. Kamps MP, Murre C, Sun XH, Baltimore D . A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990; 60: 547–555.

    CAS  PubMed  Google Scholar 

  43. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 1990; 60: 535–545.

    CAS  PubMed  Google Scholar 

  44. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    CAS  PubMed  Google Scholar 

  45. Ohta H, Sawada A, Kim JY, Tokimasa S, Nishiguchi S, Humphries RK et al. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med 2002; 195: 759–770.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    CAS  PubMed  Google Scholar 

  47. Chen CJ, Deng Z, Kim AY, Blobel GA, Lieberman PM . Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 2001; 21: 476–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Blobel GA . CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 2000; 95: 745–755.

    CAS  PubMed  Google Scholar 

  49. Kung AL, Rebel VI, Bronson RT, Ch'ng LE, Sieff CA, Livingston DM et al. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 2000; 14: 272–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM . Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA 2002; 99: 14789–14794.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. McNiece IK, Bradley TR, Kriegler AB, Hodgson GS . A growth factor produced by WEHI-3 cells for murine high proliferative potential GM-progenitor colony forming cells. Cell Biol Int Rep 1982; 6: 243–251.

    CAS  PubMed  Google Scholar 

  52. Bradley TR, Hodgson GS, Kriegler AB, McNiece IK . Generation of CFU-S13 in vitro. In: Cronkite EP (ed). Hematopoietic Stem Cell Physiology. New York: Alan R Liss, Inc., 1985, p 39.

    Google Scholar 

  53. McNiece IK, Williams NT, Johnson GR, Kriegler AB, Bradley TR, Hodgson GS . Generation of murine hematopoietic precursor cells from macrophage high-proliferative-potential colony-forming cells. Exp Hematol 1987; 15: 972–977.

    CAS  PubMed  Google Scholar 

  54. Bernstein ID, Andrews RG, Zsebo KM . Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+lin− cells, and the generation of colony-forming cell progeny from CD34+lin− cells cultured with interleukin-3, granulocyte colony-stimulating factor, or granulocyte-macrophage colony-stimulating factor. Blood 1991; 77: 2316–2321.

    CAS  PubMed  Google Scholar 

  55. Haylock DN, To LB, Dowse TL, Juttner CA, Simmons PJ . Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 1992; 80: 1405–1412.

    CAS  PubMed  Google Scholar 

  56. Ozer H, Armitage JO, Bennett CL, Crawford J, Demetri GD, Pizzo PA et al. 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. J Clin Oncol 2000; 18: 3558–3585.

    CAS  PubMed  Google Scholar 

  57. Miller CL, Eaves CJ . Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc Natl Acad Sci USA 1997; 94: 13648–13653.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brandt J, Briddell RA, Srour EF, Leemhuis TB, Hoffman R . Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood 1992; 79: 634–641.

    CAS  PubMed  Google Scholar 

  59. Bryder D, Jacobsen SE . Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro. Blood 2000; 96: 1748–1755.

    CAS  PubMed  Google Scholar 

  60. Perrimon N . Hedgehog and beyond. Cell 1995; 80: 517–520.

    CAS  PubMed  Google Scholar 

  61. Ruiz i Altaba A . Catching a Glimpse of Hedgehog. Cell 1997; 90: 193–196.

    PubMed  Google Scholar 

  62. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC . Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 1998; 20: 54–57.

    CAS  PubMed  Google Scholar 

  63. Maeno M, Mead PE, Kelley C, Xu RH, Kung HF, Suzuki A et al. The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 1996; 88: 1965–1972.

    CAS  PubMed  Google Scholar 

  64. Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 1999; 189: 1139–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001; 2: 172–180.

    CAS  PubMed  Google Scholar 

  66. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003; 425: 851–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein Jr EH, Scott MP . Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 1997; 276: 817–821.

    CAS  PubMed  Google Scholar 

  68. Fan H, Oro AE, Scott MP, Khavari PA . Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nat Med 1997; 3: 788–792.

    CAS  PubMed  Google Scholar 

  69. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB . Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422: 313–317.

    CAS  PubMed  Google Scholar 

  70. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003; 425: 846–851.

    CAS  PubMed  Google Scholar 

  71. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10: 547–558.

    CAS  PubMed  Google Scholar 

  72. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278–1281.

    CAS  PubMed  Google Scholar 

  73. Karanu FN, Murdoch B, Miyabayashi T, Ohno M, Koremoto M, Gallacher L et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood 2001; 97: 1960–1967.

    CAS  PubMed  Google Scholar 

  74. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 2000; 192: 1365–1372.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ohishi K, Varnum-Finney B, Bernstein ID . Delta-1 enhances marrow and thymus repopulating ability of human CD34(+)CD38(−) cord blood cells. J Clin Invest 2002; 110: 1165–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    CAS  PubMed  Google Scholar 

  77. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT . Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002; 99: 2369–2378.

    CAS  PubMed  Google Scholar 

  78. Lee BC, Cheng T, Adams GB, Attar EC, Miura N, Lee SB et al. P2Y-like receptor, GPR105 (P2Y14), identifies and mediates chemotaxis of bone-marrow hematopoietic stem cells. Genes Dev 2003; 17: 1592–1604.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ et al. A G protein-coupled receptor for UDP-glucose. J Biol Chem 2000; 275: 10767–10771.

    CAS  PubMed  Google Scholar 

  80. Ohta A, Sitkovsky M . Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001; 414: 916–920.

    CAS  PubMed  Google Scholar 

  81. Bienz M . TCF: transcriptional activator or repressor? Curr Opin Cell Biol 1998; 10: 366–372.

    CAS  PubMed  Google Scholar 

  82. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    CAS  PubMed  Google Scholar 

  83. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448–452.

    CAS  PubMed  Google Scholar 

  84. Ito CY, Li CY, Bernstein A, Dick JE, Stanford WL . Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 2003; 101: 517–523.

    CAS  PubMed  Google Scholar 

  85. Xie T, Spradling AC . A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000; 290: 328–330.

    CAS  PubMed  Google Scholar 

  86. Kiger AA, White-Cooper H, Fuller MT . Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 2000; 407: 750–754.

    CAS  PubMed  Google Scholar 

  87. Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT . Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 2001; 294: 2542–2545.

    CAS  PubMed  Google Scholar 

  88. Kimble JE, White JG . On the control of germ cell development in Caenorhabditis elegans. Dev Biol 1981; 81: 208–219.

    CAS  PubMed  Google Scholar 

  89. McCarter J, Bartlett B, Dang T, Schedl T . Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol 1997; 181: 121–143.

    CAS  PubMed  Google Scholar 

  90. Berry LW, Westlund B, Schedl T . Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 1997; 124: 925–936.

    CAS  PubMed  Google Scholar 

  91. Lord BI, Testa NG, Hendry JH . The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46: 65–72.

    CAS  PubMed  Google Scholar 

  92. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    CAS  PubMed  Google Scholar 

  93. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    CAS  PubMed  Google Scholar 

  94. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR . A stem cell molecular signature. Science 2002; 298: 601–604.

    CAS  PubMed  Google Scholar 

  95. de Haan G, Bystrykh LV, Weersing E, Dontje B, Geiger H, Ivanova N et al. A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood 2002; 100: 2056–2062.

    CAS  PubMed  Google Scholar 

  96. Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK et al. The genetic program of hematopoietic stem cells. Science 2000; 288: 1635–1640.

    CAS  PubMed  Google Scholar 

  97. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA . ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 2002; 298: 597–600.

    CAS  PubMed  Google Scholar 

  98. Terskikh AV, Miyamoto T, Chang C, Diatchenko L, Weissman IL . Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood 2003; 102: 94–101.

    CAS  PubMed  Google Scholar 

  99. Waegell WO, Higley HR, Kincade PW, Dasch JR . Growth acceleration and stem cell expansion in Dexter-type cultures by neutralization of TGF-beta. Exp Hematol 1994; 22: 1051–1057.

    CAS  PubMed  Google Scholar 

  100. Soma T, Yu JM, Dunbar CE . Maintenance of murine long-term repopulating stem cells in ex vivo culture is affected by modulation of transforming growth factor-beta but not macrophage inflammatory protein-1 alpha activities. Blood 1996; 87: 4561–4567.

    CAS  PubMed  Google Scholar 

  101. Dao MA, Taylor N, Nolta JA . Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc Natl Acad Sci USA 1998; 95: 13006–13011.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D T Scadden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attar, E., Scadden, D. Regulation of hematopoietic stem cell growth. Leukemia 18, 1760–1768 (2004). https://doi.org/10.1038/sj.leu.2403515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403515

Keywords

This article is cited by

Search

Quick links