Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention

Abstract

The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

References

  1. Chang F, Lee JT, Navolanic PM, Steelman JG, Blalock WL, Franklin RA et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17: 590–603.

    CAS  PubMed  Google Scholar 

  2. Blalock WL, Navolanic PM, Steelman LS, Shelton JG, Moye PW, Lee JT et al. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia 2003; 17 (in press).

    CAS  PubMed  Google Scholar 

  3. Lee Jr JT, McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention. Leukemia 2002; 16: 486–507.

    Article  CAS  PubMed  Google Scholar 

  4. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang X-Y, Algate PA et al. Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 1999; 13: 1109–1166.

    CAS  PubMed  Google Scholar 

  5. Geijsen N, Koenderman L, Coffer PJ . Specificity in cytokine signal transduction: lessons learned from the IL-3/IL-5/GM-CSF receptor family. Cytokine Growth Factor Rev 2001; 12: 19–25.

    CAS  PubMed  Google Scholar 

  6. McCubrey JA, Steelman LS, Hoyle PA, Blalock WL, Weinstein-Oppenheimer CR, Franklin RA et al. Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 1998; 12: 1903–1929.

    CAS  PubMed  Google Scholar 

  7. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14: 9–21.

    CAS  PubMed  Google Scholar 

  8. McCubrey JA, Lee JT, Steelman LS, Blalock WL, Moye PW, Chang F et al. Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prev 2001; 25: 375–393.

    CAS  PubMed  Google Scholar 

  9. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M et al. Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia 2000; 14: 642–656.

    CAS  PubMed  Google Scholar 

  10. McCubrey J A, Steelman LS, Blalock WL, Lee JT, Moye PW, Chang F et al. Synergistic effects of PI3K/Akt on abrogation of cytokine-dependency induced by oncogenic Raf. Adv Enzyme Regnl 2001; 41: 289–323.

    Google Scholar 

  11. McCubrey JA, Blalock WL, Saleh O, Pearce M, Burrows C, Steelman LS et al. Enhanced ability of daniplestim and myelopoietin-1 to suppress apoptosis in human hematopoietic cells. Leukemia 2001; 15: 1203–1216.

    CAS  PubMed  Google Scholar 

  12. Abegg AL, Vickery LE, Bremer ME, Donnelly AM, Doshi PD, Evans ML et al. The enhanced in vitro hematopoietic activity of leridisim, a chimeric dual G-CSF and IL-3 receptor agonist. Leukemia 2002; 16: 316–326.

    CAS  PubMed  Google Scholar 

  13. Srinivasa SP, Doshi PD . Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line. Leukemia 2002; 16: 244–253.

    CAS  PubMed  Google Scholar 

  14. Weinstein-Oppenheimer C, Steelman LS, Algate PA, Blalock WL, Burrows C, Hoyle PE et al. Effects of deregulated Raf activation on integrin, cytokine-receptor expression and the induction of apoptosis in hematopoietic cells. Leukemia 2000; 14: 1921–1938.

    CAS  PubMed  Google Scholar 

  15. Moye PW, Blalock WL, Hoyle PE, Chang F, Franklin RA, Weinstein-Oppenheimer C et al. Synergy between Raf and BCL2 in abrogating the cytokine-dependency of hematopoietic cells. Leukemia 2000; 14: 1060–1079.

    CAS  PubMed  Google Scholar 

  16. Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA . Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-dependent tumors. Pharm Ther 2000; 88: 229–279.

    CAS  Google Scholar 

  17. Franklin RA, McCubrey JA . Kinases positive and negative regulators of apoptosis. Leukemia 2000; 14: 2019–2034.

    CAS  PubMed  Google Scholar 

  18. White MK, McCubrey JA . Suppression of apoptosis role in cell growth and neoplasia. Leukemia 2001; 15: 1011–1021.

    CAS  PubMed  Google Scholar 

  19. Blalock WL, Pearce M, Steelman LS, Franklin RA, McCarthy SA, Cherwinski H et al. A conditionally-active form of MEK1 results in autocrine transformation of human and mouse hematopoietic cells. Oncogene 2000; 19: 526–536.

    CAS  PubMed  Google Scholar 

  20. Blalock WL, Moye PW, Chang F, Pearce M, Steelman LS, McMahon M et al. Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine-dependency of hematopoietic cells. Adv Enzyme Regul 2000; 40: 305–337.

    PubMed  Google Scholar 

  21. Blalock WL, Pearce M, Chang F, Lee JT, Pohnert S, Burrows C et al. Effects of inducible MEK1 activation on the cytokine-dependency of lymphoid cells. Leukemia 2001; 15: 794–807.

    CAS  PubMed  Google Scholar 

  22. McCubrey JA, Steelman LS, Blalock WL, Lee JT, Moye PW, Chang F et al. Synergistic effects of PI3K/Akt on abrogation of cytokine-dependency induced by oncogenic Raf. Adv Enzyme Regul 2001; 41: 289–323.

    CAS  PubMed  Google Scholar 

  23. Samuels ML, Weber MJ, Bishop JM, McMahon M . Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human Raf-1 protein kinase. Mol Cell Biol 1993; 13: 6241–6252.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pritchard CA, Samuels ML, Bosch E, McMahon M . Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH-3T3 cells. Mol Cell Biol 1995; 15: 6430–6442.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pritchard CA, Bolin L, Slattery R, Murray R, McMahon M . Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase gene. Curr Biol 1996; 6: 614–617.

    CAS  PubMed  Google Scholar 

  26. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    CAS  PubMed  Google Scholar 

  27. Bosch E, Cherwinski H, Peterson D, McMahon M . Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1. Oncogene 1997; 11: 1021–1034.

    Google Scholar 

  28. Wolthuis RMF, Bos JL . Ras caught in another affair the exchange factors for Ral. Curr Opin Genet Develop 1999; 9: 112–117.

    CAS  Google Scholar 

  29. Peyssonnaux C, Provot S, Felder-Schmittbuhl MP, Calothy G, Eychéne A . Induction of postmitotic neuroretina cell proliferation by distinct Ras downstream signaling pathways. Mol Cell Biol 2000; 20: 7068–7079.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamamoto T, Taya S, Kaibuchi K . Ras-induced transformation and signaling pathway. J Biochem 1999; 126: 799–803.

    CAS  PubMed  Google Scholar 

  31. Yan J, Roy S, Apolloni A, Lane A, Hancock JF . Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem 1998; 273: 24052–24056.

    CAS  PubMed  Google Scholar 

  32. Zhang BH, Guan KL . Regulation of the Raf kinase by phosphorylation. Exp Lung Res 2001; 2: 269–295.

    Google Scholar 

  33. Warne PH, Viciana PR, Downward J . Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 1993; 364:352–355.

    CAS  PubMed  Google Scholar 

  34. Moodie SA, Willumsen BM, Weber MJ, Wolfman A . Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 1993; 260: 1658–1661.

    CAS  PubMed  Google Scholar 

  35. Vojteck AB, Hollenberg SM, Cooper JA . Mammalian Ras interacts directly with the serine/threonine Raf. Cell 1993; 74: 205–214.

    Google Scholar 

  36. Li W, Melnick M, Perrimon N . Dual function of Ras in Raf activation. Development 1998; 125: 4999–5008.

    CAS  PubMed  Google Scholar 

  37. Marshall CJ . Raf gets it together. Nature 1996; 383: 127–128.

    CAS  PubMed  Google Scholar 

  38. Farrar MA, Alberola-Ila J, Perlmutter RM . Activation of the Raf-1 kinase cascade by coumermycin induced dimerization. Nature 1996; 383: 178–181.

    CAS  PubMed  Google Scholar 

  39. Luo Z, Tzivion G, Belshaw PJ, Vavvas D, Marshall M, Avruch J . Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 1996; 383: 181–185.

    CAS  PubMed  Google Scholar 

  40. Weber CK, Slupsky JR, Kalmes HA, Rapp UR . Active Ras induces heterodimerization of c-Raf and B-Raf. Cancer Res 2001; 61: 3595–31324.

    CAS  PubMed  Google Scholar 

  41. Farrar MA, Tian J, Perlmutter RM . Membrane localization of Raf assists engagement of downstream effectors. J Biol Chem 2000; 275: 31318–31324.

    CAS  PubMed  Google Scholar 

  42. Stone J, deLange T, Ramsay G, Jakobvits E, Bishop JM, Varmus H et al. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 1987; 7: 1697–1709.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chong H, Lee J, Guan KL . Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J 2001; 20: 3716–3727.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fabian JR, Daar IO, Morrison DK . Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 1993; 13: 7170–7179.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Marais R, Wynne J, Treisman R . The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 1993; 73: 381–393.

    CAS  PubMed  Google Scholar 

  46. Morrison DK, Heidecker G, Rapp UR, Copeland TD . Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem 1993; 268: 17309–17316.

    CAS  PubMed  Google Scholar 

  47. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R . Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 1999; 18: 2137–2148.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Song J, Takeda M, Morimoto RI . Bag1-Hsp70 mediates a physiological stress signaling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol 2001; 3: 276–282.

    CAS  PubMed  Google Scholar 

  49. Tzivion G, Shen YH, Zhu J . 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene 2001; 20: 6331–6338.

    CAS  PubMed  Google Scholar 

  50. Blagosklonney MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462.

    Google Scholar 

  51. Heimbrook DC, Huber HE, Stirdivant SM, Claremon D, Liverton N, Patrick DR et al. Identification of potent, selective kinase inhibitors of Raf. Proc Am Assoc Cancer Res 1998; 39: 558.

    Google Scholar 

  52. Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Boyle FT, Hewitt N et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem Biol 1999; 6: 559–568.

    CAS  PubMed  Google Scholar 

  53. Lyons JF, Wilhelm S, Hibner B, Bollag G . Discovery of a novel Raf kinase inhibitor. Endocr-Related Cancer 2001; 8: 219–225.

    CAS  Google Scholar 

  54. McPhillips F, Mullen P, Monia BP, Ritchie AA, Dorr FA, Smyth JF et al. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer 2001; 85: 1753–1758.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lau QC, Brusselbach S, Muller R . Abrogation of c-Raf expression induces apoptosis in tumor cells. Oncogene 1998; 16: 1899–1902.

    CAS  PubMed  Google Scholar 

  56. Daum G, Eisenmann-Tappe I, Fries HW, Troppmair J, Rapp UR . The ins and outs of Raf kinases. Trends Biol Sci 2000; 19: 474–480.

    Google Scholar 

  57. Avruch J, Zhang XF, Kyriakis JM . Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biol Sci 1994; 19: 279–28358.

    CAS  Google Scholar 

  58. Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Aelst LV et al. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol 1996; 16: 3923–3933.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Marais R, Light Y, Paterson HF, Marshall CJ . Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 1995; 14: 3136–3145.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dhillon AS, Meikle S, Yazici Z, Eulitz M, Kolch W . Regulation of Raf-1 activation and signaling by dephosphorylation. EMBO J 2002; 1: 64–71.

    Google Scholar 

  61. Kolch W . To be or not to be: a question of B-Raf. Trends Neurosci 2001; 21: 498–500.

    Google Scholar 

  62. Kolch W . Meaningful relationships the regulation of the Ras/Raf/Mek-ERK pathway by protein interactions. Biochem J 2000; 351: 289–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA et al. Raf-1 associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 2000; 275: 22300–22304.

    CAS  PubMed  Google Scholar 

  64. Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C et al. Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP. Nature 1999; 401: 173–177.

    CAS  PubMed  Google Scholar 

  65. Lee JE, Beck TW, Wojnowski L, Rapp UR . Regulation of A-Raf expression. Oncogene 1996; 12: 1669–1677.

    CAS  PubMed  Google Scholar 

  66. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 1997; 272: 4378–4383.

    CAS  PubMed  Google Scholar 

  67. Diaz B, Barnard D, Filson A, MacDonald S, King A, Marshall M . Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol Cell Biol 1997; 17: 4509–4516.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 1998; 396: 180–183.

    CAS  PubMed  Google Scholar 

  69. King AJ, Wireman RS, Hamilton M, Marshall MS . Phosphorylation site specificity of the Pak-mediated regulation of Raf-1 and cooperativity with Src. FEBS Lett 2001; 497: 6–14.

    CAS  PubMed  Google Scholar 

  70. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H et al. Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature 1993; 364: 249–252.

    CAS  PubMed  Google Scholar 

  71. Cai H, Smola U, Wixler V, Eisenmann-Tappe I, Diaz-Meco MT, Moscat J et al. Role of diacylglycerol-regulated protein kinase C isotype in growth factor activation of the Raf-1 protein kinase. Mol Cell Biol 1997; 17: 732–741.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng JJ, Wung BS, Chao YJ, Wang DL . Sequential activation of protein kinase C (PKC)-alpha and PKC-epsilon contributes to sustained Raf/ERK1/2 activation in endothelial cells under mechanical strain. J Biol Chem 2001; 276: 31368–31375.

    CAS  PubMed  Google Scholar 

  73. Barnard D, Diaz B, Clawson D, Marshall M . Oncogenes, growth factors and phorbol esters regulate Raf-1 through common mechanisms. Oncogene 1998; 17: 1539–1547.

    CAS  PubMed  Google Scholar 

  74. Schonwasser DC, Marasis RM, Marshall CJ, Parker PJ . Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel and atypical protein kinase C isotypes. Mol Cell Biol 1998; 18: 790–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Barry OP, Kazanietz MG . Protein kinase C isozymes, novel phorbol ester receptors and cancer chemotherapy. Curr Pharm Des 2001; 7: 1725–1744.

    CAS  PubMed  Google Scholar 

  76. Sredni B, Kalechman Y, Albeck M, Gross O, Aurbach D, Sharon P et al. Cytokine secretion effected by synergism of the immunomodulator AS101 and the protein kinase C inducer bryostatin. Immunology 1990; 70: 473–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rommel C, Clarke BA, Zimmermann S, Nuñez L, Rossman R, Reid K et al. Differentiation stage-specific inhibition of the Raf–MEK–ERK pathway by Akt. Science 1999; 286: 1738–1741.

    CAS  PubMed  Google Scholar 

  78. Reusch HP, Zimmermann S, Schaefer M, Paul M, Moelling K . Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells. J Biol Chem 2001; 276: 33630–33637.

    CAS  PubMed  Google Scholar 

  79. Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H, Kolch W . Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol 2002; 22: 3237–3246.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 2000; 275: 27354–27359.

    CAS  PubMed  Google Scholar 

  81. Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip. Mol Cell Biol 1997; 17: 5598–5611.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J 1994; 13: 1610–1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang W, Kessler DS, Erikson RL . Biochemical and biological analysis of Mek1 phosphorylation site mutants. Mol Biol Cell 1995; 6: 237–245.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Papin C, Eychene A, Brunet A, Pages G, Pouyssegur J, Calothey G et al. B-Raf protein isoforms interact with and phosphorylate Mek-1 on serine residues 218 and 222. Oncogene 1995; 10: 1647–1651.

    CAS  PubMed  Google Scholar 

  85. Wu X, Noh SJ, Zhou G, Dixon JE, Guan KL . Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J Biol Chem 1996; 271: 3265–3271.

    CAS  PubMed  Google Scholar 

  86. Hekman M, Hamm H, Villar AV, Bader B, Kuhlmann J, Nickel J et al. Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers: preferential binding of Raf to artificial lipid rafts. J Biol Chem 2002; 277: 24090–24102.

    CAS  PubMed  Google Scholar 

  87. Mercer K, Chiloeches A, Huser M, Kiernan M, Marais R, Pritchard C . ERK signalling and oncogene transformation are not impaired in cells lacking A-Raf. Oncogene 2002; 21: 347–355.

    CAS  PubMed  Google Scholar 

  88. English JM, Cobb MH . Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 2002; 23: 40–45.

    CAS  PubMed  Google Scholar 

  89. Adjei AA . Signal transduction pathway targets for anticancer drug discovery. Current Pharm Des 2000; 6: 361–378.

    CAS  Google Scholar 

  90. Xu S, Robbins D, Frost J, Dang A, Lange-Carter C, Cobb MH . MEKK1 phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA 1995; 92: 6808–6812.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Blenis J . Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 1993; 90: 5889–5892.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pouyssegur J, Volmat V, Lenormand P . Fidelity and spatio-temporal control in MAP kinase (ERKs) signaling. Biochem Pharm 2002; 64: 755–763.

    CAS  PubMed  Google Scholar 

  93. Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 1999; 13: 32–37.

    CAS  PubMed  Google Scholar 

  94. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595.

    CAS  PubMed  Google Scholar 

  95. Bartram CR . Mutations in ras genes in myelocytic leukemias and myelodysplastic syndromes. Blood Cells 1988; 14: 533–538.

    CAS  PubMed  Google Scholar 

  96. McCubrey JA, Steelman LS, Wang X-Y, Algate PA, Hoyle PE, White C et al. Differential effects of viral and cellular oncogenes on the growth factor-dependency of hematopoietic cells. Int J Oncol 1995; 7: 295–310.

    CAS  PubMed  Google Scholar 

  97. Malumbres M, Castro IPD, Hernández MI, Jiménez M, Corral T, Pellicer A . Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15INK4b. Mol Cell Biol 2000; 20: 2915–2925.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hirakawa T, Ruley HE . Rescue of cells from ras oncogene-induced growth arrest by a second complementing oncogene. Proc Natl Acad Sci USA 1988; 85: 1519–1523.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bar-Sagi D, Feramisco JR . Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 1985; 42: 841–848.

    CAS  PubMed  Google Scholar 

  100. Benito M, Porras A, Nebreda AR, Santos E . Differentiation of 3T3-L1 fibroblasts to adipocytes induced by transfection of ras oncogenes. Science 1991; 253: 565–568.

    CAS  PubMed  Google Scholar 

  101. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    CAS  PubMed  Google Scholar 

  102. Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SM . Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 2000; 19: 5338–5347.

    CAS  PubMed  Google Scholar 

  103. McGlynn AP, Padua RA, Burnett AK, Darley RL . Alternative effects of Ras and Raf oncogenes on the proliferation and apoptosis of factor-dependent FDC-P1 cells. Leukemia Res 2000; 24: 47–54.

    CAS  Google Scholar 

  104. Muszynski KW, Ruscett FW, Heidecker G, Rapp UR, Troppmair J, Gooya JM et al. Raf-1 protein is required for growth factor-induced proliferation of hematopoietic cells. J Exp Med 1995; 181: 2189–2199.

    CAS  PubMed  Google Scholar 

  105. Sanders MR, Lu H, Walker F, Sorbad S, Dainiak N . The Raf-1 protein mediates insulin-like growth factor-induced proliferation of erythroid progenitor cells. Stem Cells 1998; 16: 200–207.

    CAS  PubMed  Google Scholar 

  106. Kerkhoff E, Rapp UR . Induction of cell proliferation in quiescent NIH-3T3 cells by oncogenic c-Raf-1. Mol Cell Biol 1997; 17: 2576–2586.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cioffi CL, Garay M, Johnston JF, McGraw K, Boggs RT, Hreniuk BD et al. Selective inhibition of A-Raf and C-Raf mRNA expression by antisense oligodeoxynucleotides in rat vascular smooth muscle cells: role of A-Raf and C-Raf in serum-induced proliferation. Mol Pharmacol 1997; 51: 383–389.

    CAS  PubMed  Google Scholar 

  108. Ravi RK, Weber E, McMahon M, Williams JR, Baylin S, Mal A et al. Activated Raf-1 causes cell cycle arrest in small cell lung cancer cells. J Clin Invest 1998; 101: 153–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lloyd AC, Obermuller F, Staddon S, Barth CF, McMahon M, Land H . Cooperating oncogenes converge to regulate cyclin/Cdk complexes. Genes Devel 1997; 11: 663–677.

    CAS  PubMed  Google Scholar 

  110. Yen A, Williams M, Platko JD, Der C, Hisaka M . Expression of activated Raf accelerates cell differentiation and RB protein down-regulation but not hypophosphorylation. Eur J Cell Biol 1994; 65: 103–113.

    CAS  PubMed  Google Scholar 

  111. Killmann NMB, McCubrey JA . Molecular targets for therapy signal, transduction inhibitors and imatinib. Leukemia 2002; 16: 1205.

    Google Scholar 

  112. Hochhaus A, McCubrey JA, Killmann NMB . Spotlight imatinib: a model for signal transduction inhibitors and imatinib. Leukemia 2002; 16: 1205–1206.

    CAS  Google Scholar 

  113. Chang F, McCubrey JA . P21Cip1 induced by Raf is associated with increased Cdk4 activity in hematopoietic cells. Oncogene 2001; 20: 4354–4364.

    CAS  PubMed  Google Scholar 

  114. Chang F, Steelman LS, McCubrey JA . Raf-induced cell cycle progression in human TF-1 hematopoietic cells. Cell Cycle 2002; 1: 220–226.

    CAS  PubMed  Google Scholar 

  115. Jelinek T, Dent P, Sturgill TW, Weber MJ . Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation. Mol Cell Biol 1996; 16: 1027–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kuroda S, Ohtsuka T, Yamamori B, Fukui K, Shimizu K, Takai Y . Different effects of various phospholipids on Ki-Ras-, Ha-Ras-, and Rap1B-induced B-Raf activation. J Biol Chem 1996; 271: 14680–14683.

    CAS  PubMed  Google Scholar 

  117. Voice J K, Klemke RL, Le A, Jackson JH . Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J Biol Chem 1999; 274: 17164–17170.

    PubMed  Google Scholar 

  118. Weber CK, Slupsky JR, Hermann C, Schuler M, Rapp UR, Block C . Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes. Oncogene 2000; 19: 169–176.

    CAS  PubMed  Google Scholar 

  119. Hagemann C, Kalmes A, Wixler V, Wixler L, Schuster T, Rapp UR . The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett 1997; 403: 200–202.

    CAS  PubMed  Google Scholar 

  120. Shinkai M, Masuda T, Kariya K, Tamada M, Shrouzu M, Yokoyama S et al. Difference in the mechanism of interaction of Raf-1 and B-Raf with H-Ras. Biochem Biophys Res Commun 1996; 22: 729–734.

    Google Scholar 

  121. Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW et al. Activation of Raf-1 by 14-3-3 proteins. Nature 1994; 371: 612–614.

    CAS  PubMed  Google Scholar 

  122. Freed E, Symons M, MacDonald SG, McCormick F, Ruggieri R . Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 1994; 265: 1713–1716.

    CAS  PubMed  Google Scholar 

  123. Irie K, Gotoh Y, Yashar BM, Errede B, Nishida E, Matsumoto K . Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science 1994; 265: 1716–1719.

    CAS  PubMed  Google Scholar 

  124. Papin C, Denouel A, Calothy G, Eychene A . Identification of signaling proteins interacting with B-Raf in the yeast two-hybrid system. Oncogene 1996; 12: 2213–2221.

    CAS  PubMed  Google Scholar 

  125. Tzivion G, Luo Z, Avruch J . A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 1998; 394: 88–92.

    CAS  PubMed  Google Scholar 

  126. Storm SM, Cleveland JL, Rapp UR . Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene 1990; 5: 345–351.

    CAS  PubMed  Google Scholar 

  127. Wadewitz AG, Winer MA, Wolgemuth DJ . Developmental and cell lineage specificity of raf family gene expression in mouse. Oncogene 1993; 8: 1055–1062.

    CAS  PubMed  Google Scholar 

  128. Wojnowski L, Zimmer AM, Bec TW, Hahn H, Bernal R, Rapp UR et al. Endothelial apoptosis in Braf-deficient mice. Nat Genet 1997; 16: 293–297.

    CAS  PubMed  Google Scholar 

  129. Wojnowski L, Stancato LF, Zimmer AM, Hahn H, Beck TW, Larner AC et al. Craf-1 protein kinase is essential for mouse development. Mech Dev 1998; 76: 141–149.

    CAS  PubMed  Google Scholar 

  130. Hagemann C, Rapp UR . Isotype-specific functions of Raf kinases. Exp Cell Res 1999; 253: 34–46.

    CAS  PubMed  Google Scholar 

  131. Vossler MR, Yao H, York RD, Pan M-G, Rim CS, Stork PJS . CAMP activates MAP kinase and Elk-1 through a B-Raf and Rap1-dependent pathway. Cell 1997; 89: 73–82.

    CAS  PubMed  Google Scholar 

  132. Shinkai M, Masuda T, Kariya K, Tamada M, Shirouzu M, Yokoyama S et al. Difference in the mechanism of interaction of Raf-1 and B-Raf with H-Ras. Biochem Biophys Res Commun 1996; 223: 729–734.

    CAS  PubMed  Google Scholar 

  133. Rosario M, Paterson HF, Marshall CJ . Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH-3T3 cells. EMBO J 1999; 18: 1270–1279.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kalmes A, Hagemann C, Weber CK, Wixler L, Schuster T, Rapp UR . Interaction between the protein kinase B-Raf and the alpha-subunit of the 11S proteasome regulator. Cancer Res 1998; 58: 2986–2990.

    CAS  PubMed  Google Scholar 

  135. Pahl HL . Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999; 18: 6853–6866.

    CAS  PubMed  Google Scholar 

  136. Yamamoto Y, Gaynor RB . Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107: 135–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen FE, Ghosh G . Regulation of DNA binding by Rel/NF-kappaB transcription factors: structural views. Oncogene 1999; 18: 6845–6852.

    CAS  PubMed  Google Scholar 

  138. Wang CY, Mayo MW, Komeluk RG, Goeddel DV, Baldwin Jr AS . NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680–1683.

    CAS  PubMed  Google Scholar 

  139. Govind S . Control of development and immunity by Rel transcription factors in Drosophila. Oncogene 1999; 18: 6875–6887.

    CAS  PubMed  Google Scholar 

  140. Baldwin AS . Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Invest 2001; 107: 241–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin Jr AS . Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J Biol Chem 1997; 272: 24113–24116.

    CAS  PubMed  Google Scholar 

  142. Schreck R, Baeuerle PA . NF-κB as inducible transcriptional activator of the granulocyte–macrophage colony-stimulating factor gene. Mol Cell Biol 1990; 10: 1281–1286.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Gilmore TD . The Rel/NF-κB signal transduction pathway: introduction. Oncogene 1999; 18: 6845–6852.

    Google Scholar 

  144. Schmitz ML, Baeuerle P . The p65 subunit is responsible for the strong transcription activating potential of NF-κB. EMBO J 1991; 10: 3805–3817.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ruben SM, Narayanan R, Klement JF, Chen CH, Rosen CA . Functional characterization of the NF-κB p65 transcriptional activator and an alternatively spliced derivative. Mol Cell Biol 1992; 12: 444–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Whiteside ST, Israel A . I kappa B proteins: structure, function and regulation. Semin Cancer Biol 1999; 8: 75–82.

    Google Scholar 

  147. Schmitz ML, Bacher S, Kracht M . IκB-independent control of NF-κB activity by modulatory phosphorylations. Trends Biochem Sci 2001; 26: 186–190.

    CAS  PubMed  Google Scholar 

  148. Israel A . The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol 2000; 10: 129–133.

    CAS  PubMed  Google Scholar 

  149. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000; 18: 621–663.

    CAS  PubMed  Google Scholar 

  150. Karin M . How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene 1999; 18: 6867–6874.

    CAS  PubMed  Google Scholar 

  151. DiDonato J, Mercurio F, Rosette C, Wu-Li J, Suyang H, Ghosh S et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol 1996; 16: 1295–1304.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zandi E, Karin M . Bridging the gap: composition, regulation, and physiological function of the IκB kinase complex. Mol Cell Biol 1999; 19: 4547–4551.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tanaka K, Kawakami T, Tateishi K, Yashiroda H, Chiba T . Control of IκBα proteolysis by the ubiquitin–proteasome pathway. Biochimie 2001; 83: 351–356.

    CAS  PubMed  Google Scholar 

  154. Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 1998; 93: 1231–1240.

    CAS  PubMed  Google Scholar 

  155. Ling L, Zhaodan C, Goeddel DV . NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc Natl Acad Sci USA 1998; 95: 3792–3797.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Nakano H, Shindo M, Sakon S, Nishinaka S, Mihara M, Yagita H et al. Differential regulation of IκB kinase α and β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci USA 1998; 95: 3537–3542.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee FS, Peters RT, Dang LC, Maniatis T . MEKK1 activates both IκB kinase α and IκB kinase β. Proc Natl Acad Sci USA 1998; 95: 9319–9324.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Nemoto S, DiDonato JA, Lin A . Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB-inducing kinase. Mol Cell Biol 1998; 18: 7336–7343.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang D, Westerheide SD, Hanson JL, Baldwin Jr AS . TNFα-induced phosphorylation of RelA/p65 on ser529 is controlled by casein kinase II. J Biol Chem 2000; 275: 32592–32597.

    CAS  PubMed  Google Scholar 

  160. Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W . IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999; 274: 30353–30356.

    CAS  PubMed  Google Scholar 

  161. Wang D, Baldwin Jr AS . Activation of nuclear factor-κB-dependent transcription by tumor necrosis factor-α is mediated through phosphorylation of RelA/p65 on serine 529. J Biol Chem 1998; 73: 29411–29416.

    Google Scholar 

  162. Zhong H, Voll RE, Ghosh S . Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998; 1: 661–671.

    CAS  PubMed  Google Scholar 

  163. Bruder JT, Heidecker G, Tan TH, Weske JC, Derse D, Rapp UR . Oncogene activation of HIV-LTR-driven expression via the NF-kappa B binding sites. Nucleic Acids Res 1993; 21: 5229–5234.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Norris JL, Baldwin Jr AS . Oncogenic Ras enhances NF-κB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways. J Biol Chem 1999; 274: 13841–13846.

    CAS  PubMed  Google Scholar 

  165. Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR . Raf induces NF-κB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 2000; 97: 4615–4620.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ludwig L, Kessler H, Wagne M, Hoang-Vu C, Dralle H, Adler G et al. Nuclear factor-κB is constitutively active in C-cell carcinoma and required for RET-induced transformation. Cancer Res 2001; 61: 4526–4535.

    CAS  PubMed  Google Scholar 

  167. McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M . Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev 1995; 9: 1953–1964.

    CAS  PubMed  Google Scholar 

  168. McCarthy SA, Chen D, Yang BS, Garcia Ramirez JJ, Cherwinski H, Chen XR et al. Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol Cell Biol 1997; 17: 2401–2412.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kerkhoff E, Houben R, Löffler S, Troppmair J, Lee J-E, Rapp UR . Regulation of c-myc expression by Ras/Raf signaling. Oncogene 1998; 16: 211–216.

    CAS  PubMed  Google Scholar 

  170. Schouten GJ, Vertegaal AC, Whiteside ST, Israel A, Toebes M, Dorsman JC et al. IκBα is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J 1997; 16: 3133–3144.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Ghoda L, Lin X, Greene WC . The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IκBα and stimulates its degradation in vitro. J Biol Chem 1997; 272: 21281–21288.

    CAS  PubMed  Google Scholar 

  172. Funakoshi M, Tago K, Sonoda Y, Tominaga S, Kasahara T . A MEK inhibitor, PD98059 enhances IL-1-induced NF-κB activation by the enhanced and sustained degradation of IκBα. Biochem Biophys Res Commun 2001; 283: 248–254.

    CAS  PubMed  Google Scholar 

  173. Iordanov M, Bender K, Ade T, Schmid W, Sachsenmaier C, Engel K et al. CREB is activated by UVC through a p38/HOG-1-dependent protein kinase. EMBO J 1997; 16: 1009–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Muthusamy N, Leiden JM . A protein kinase C-, Ras-, and RSK2-dependent signal transduction pathway activates the cAMP-responsive element-binding protein transcription factor following T cell receptor engagement. J Biol Chem 1998; 273: 22841–22847.

    CAS  PubMed  Google Scholar 

  175. Haus-Seuffert P, Meisterernst M . Mechanisms of transcriptional activation of cAMP-responsive element-binding protein CREB. Mol Cell Biochem 2000; 212: 5–9.

    CAS  PubMed  Google Scholar 

  176. Boehlk S, Fessele S, Mojaat A, Miyamoto NG, Werner T, Nelson EL et al. ATF and Jun transcription factors, acting through an Ets/CRE promoter module, mediate lipopolysaccharide inducibility of the chemokine RANTES in monocytic Mono Mac 6 cells. Eur J Immunol 2000; 30: 1102–1112.

    CAS  PubMed  Google Scholar 

  177. Feuerstein N, Firestein R, Aiyar N, He X, Murasko D, Cristofalo V . Late induction of CREB/ATF binding and a concomitant increase in cAMP levels in T and B lymphocytes stimulated via the antigen receptor. J Immunol 1996; 156: 4582–4593.

    CAS  PubMed  Google Scholar 

  178. Shimizu M, Nomura Y, Suzuki H, Ichikawa E, Takeuchi A, Suzuki M et al. Activation of the Rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res 1998; 239: 93–103.

    CAS  PubMed  Google Scholar 

  179. Djaborkhel R, Tvrdík D, Eckschlager T, Raška I, Müller J . Cyclin A down-regulation in TGFβ1-arrested follicular lymphoma cells. Exp Cell Res 2000; 261: 250–259.

    CAS  PubMed  Google Scholar 

  180. Nagata D, Suzuki E, Nishimatsu H, Satonaka H, Goto A, Omata M et al. Transcriptional activation of the cyclin D1 gene is mediated by multiple cis-elements. including SP1 sites and a cAMP-responsive element in vascular endothelial cells. J Biol Chem 2001; 276: 662–669.

    CAS  PubMed  Google Scholar 

  181. Vanhoutte P, Barrier J, Gilbert B, Pages C, Besson M, Hipskind RA et al. Glumate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol Cell Biol 1999; 19: 136–146.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang Y, Prywes R . Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites. Oncogene 2000; 19: 1379–1385.

    CAS  PubMed  Google Scholar 

  183. Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM et al. Insulin-like growth factor-1 induces bcl-2 promoter through the transcription factor cAMP-responsive element-binding protein. J Biol Chem 1999; 274: 27529–27535.

    CAS  PubMed  Google Scholar 

  184. Arcinas M, Heckman CA, Mehew JW, Boxer LM . Molecular mechanisms of transcriptional control of bcl-2 and c-myc in follicular and transformed lymphoma. Cancer Res 2001; 61: 5202–5206.

    CAS  PubMed  Google Scholar 

  185. Wilson BE, Mochon E, Boxer LM . Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 1996; 16: 5546–5556.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Treisman R . Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 1996; 8: 205–215.

    CAS  PubMed  Google Scholar 

  187. Treisman R . The serum response element. Trends Biochem Sci 1992; 17: 423–426.

    CAS  PubMed  Google Scholar 

  188. De Cesare D, Jacquot S, Hanauer A, Sassone-Corsi P . Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc Natl Acad Sci USA 1998; 95: 12202–12207.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH . Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 1993; 365: 855–859.

    CAS  PubMed  Google Scholar 

  190. Nakajima T, Uchida C, Anderson SF, Parvin JD, Montminy M . Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev 1997; 11: 738–747.

    CAS  PubMed  Google Scholar 

  191. Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD et al. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 1997; 90: 1107–1112.

    CAS  PubMed  Google Scholar 

  192. Kouzarides T . Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 1999; 9: 40–48.

    CAS  PubMed  Google Scholar 

  193. Bito H, Deisseroth K, Tsien RW . CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 1996; 87: 1203–1214.

    CAS  PubMed  Google Scholar 

  194. Xing J, Ginty DD, Greenberg ME . Coupling of the RAS–MAPK-pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 1996; 273: 959–963.

    CAS  PubMed  Google Scholar 

  195. Matthews RP, Guthrie CR, Wailes LM, Zhao X, Means AR, McKnight GS . Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol 1994; 14: 6107–6116.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. De Groot R, Ballou LM, Sassone-Corsi P . Positive regulation of the cAMP-responsive activator CREM by the p70 S6 kinase: an alternative route to mitogen-induced gene expression. Cell 1994; 79: 81–91.

    CAS  PubMed  Google Scholar 

  197. Deak M, Clifton AD, Lucocq JM, Alessi DR . Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 1998; 17: 4426–4441.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 1998; 21: 869–883.

    CAS  PubMed  Google Scholar 

  199. Monaco L, Sassone-Corsi P . Cross-talk in signal transduction: Ras-dependent induction of cAMP-responsive transcriptional repressor ICER by nerve growth factor. Oncogene 1997; 15: 2493–2500.

    CAS  PubMed  Google Scholar 

  200. Böhm M, Moellmann G, Cheng E, Alvarez FM, Wagner S, Sassone-Corsi P et al. Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differ 1995; 6: 291–302.

    PubMed  Google Scholar 

  201. Lian JP, Huang R, Robinson D, Badwey JA . Activation of p90RSK and cAMP response element binding protein in stimulated neutrophils: novel effects of the pyridinyl imidazole SB 203580 on activation of the extracellular signal-regulated kinase cascade. J Immunol 1999; 163: 4527–4536.

    CAS  PubMed  Google Scholar 

  202. Wasylyk B, Hahn SL, Giovane A . The Ets family of transcription factors. Eur J Biochem 1993; 211: 7–18.

    CAS  PubMed  Google Scholar 

  203. Vananzoni MC, Robinson LR, Hodge DR, Kola I, Seth A . ETS1 and ETS2 in p53 regulatin: spatial separation of ETS binding sites (EBS) modulate protein: DNA interaction. Oncogene 1996; 12: 1199–1204.

    Google Scholar 

  204. Liu SH, Ng SY . Serum response factor associated ETS proteins: ternary complex factors and PEA3-binding factor. Biochem Biophys Res Commun 1994; 201: 1406–1413.

    CAS  PubMed  Google Scholar 

  205. Lambert PE, Ludford-Menting MJ, Deacon NJ, Kola I, Doherty RR . The nfkb1 promoter is controlled by proteins of the Ets family. Mol Biol Cell 1997; 8: 313–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 1995; 270: 23589–23597.

    CAS  PubMed  Google Scholar 

  207. Tamir A, Howard J, Higgins RR, Li YJ, Berger L, Zacksenhaus E et al. Fil-1, an Ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation evidence for direct transcriptional repression of the Rb gene during differentiation. Mol Cell Biol 1999; 19: 4452–4464.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Beier F, Taylor AC, LuValle P . The Raf-1/MEK/ERK pathway regulates the expression of the p21Cip1/Waf1 gene in chondrocytes. J Biol Chem 1999; 274: 30273–30279.

    CAS  PubMed  Google Scholar 

  209. Frampton J, Ramqvist T, Graf T . v-Myb of E26 leukemia virus up-regulates bcl-2 and suppress apoptosis in myeloid cells. Genes Dev 1996; 10: 2720–2731.

    CAS  PubMed  Google Scholar 

  210. Sevilla L, Aperlo C, Dulic V, Chambard JC, Boutonnet C, Pasquier O et al. The Ets2 transcription factor inhibits apoptosis induced by colony stimulating factor 1 deprivation of macrophages through a Bcl-xL-dependent mechanism. Mol Cell Biol 1999; 19: 2624–2634.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Li XR, Chong AS, Wu J, Roebuck KA, Kumar A, Parrillo JE et al. Transcriptional regulation of Fas gene expression by GA-binding protein and AP-1 in T cell antigen receptor.CD3 complex-stimulated T cells. J Biol Chem 1999; 274: 35203–35210.

    CAS  PubMed  Google Scholar 

  212. Coles LS, Diamond P, Occhiodoro F, Vadas MA, Shannon MF . An ordered array of cold shock domain repressor elements across tumor necrosis factor-responsive elements of the granulocyte–macrophage colony-stimulating factor promoter. J Biol Chem 2000; 275: 14482–14493.

    CAS  PubMed  Google Scholar 

  213. Nimer S, Zhang J, Avraham H, Miyazaki Y . Transcriptional regulation of interleukin-3 expression in megakaryocytes. Blood 1996; 88: 66–74.

    CAS  PubMed  Google Scholar 

  214. Maul RS, Zhang H, Reid JDT, Pedigo NG, Kaetzel DM . Identification of a cell type-specific enhancer in the distal 5′-region of the platelet-derived growth factor A-chain gene. J Biol Chem 1998; 273: 33239–33246.

    CAS  PubMed  Google Scholar 

  215. Mavrothalassitis G, Ghysdael J . Proteins of the ETS family with transcriptional receptor activity. Oncogene 2000; 19: 6524–6532.

    CAS  PubMed  Google Scholar 

  216. Yang B, Hauser CA, Henkel G, Colman MS, van Beveren C, Stacey KJ et al. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol Cell Biol 1996; 16: 538–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Yang SH, Yates PR, Whitmarsh AJ, Davis RJ, Sharrocks AD . The Elk-1 ETS-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol 1998; 18: 710–720.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Yordy JS, Muise-Helmericks RC . Signal transduction and the Ets family of transcription factors. Oncogene 2000; 19: 6503–6513.

    CAS  PubMed  Google Scholar 

  219. Sgouras DN, Athanasiou MA, Beal Jr GJ, Fisher RJ, Blair DG, Mavrothalassitis GJ . ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J 1995; 14: 4781–4793.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Criqui-Filipe P, Ducret C, Maira SM, Wasylyk B . Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J 1999; 18: 3392–3403.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Giovane A, Pintzas A, Maira SM, Sobieszczuk P, Wasylyk B . Net, a new ets transcription factor that is activated by Ras. Genes Dev 1994; 8: 1502–1513.

    CAS  PubMed  Google Scholar 

  222. Le Gallic L, Sgouras D, Beal Jr G, Mavrothalassitis G . Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol Cell Biol 1999; 19: 4121–4133.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Sgambato V, Vanhoutte P, Pages C, Rogard M, Hipskind R, Besson MJ et al. In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain. J Neurosci 1998; 18: 214–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ . Integration of MAP kinase signal transduction pathway at the serum response element. Science 1995; 269: 403–407.

    CAS  PubMed  Google Scholar 

  225. Hill CS, Marais R, John S, Wynne J, Dalton S, Treisman R . Functional analysis of a growth factor-responsive transcription factor complex. Cell 1993; 73: 395–406.

    CAS  PubMed  Google Scholar 

  226. Gille H, Sharrocks AD, Shaw PE . Phosphorylation of transcriptioin factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 1992; 358: 414–417.

    CAS  PubMed  Google Scholar 

  227. Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb M et al. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 1995; 14: 951–962.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Price MA, Cruzalegui FH, Treisman R . The p38 and ERK MAP kinase pathways co-operate to activate ternary complex factors and c-fos transcription in response to activate ternary complex factors and c-fos transcription in response to UV light. EMBO J 1996; 15: 6552–6563.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Meyer-Vehn T, Covacci A, Kist M, Pahl HL . Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 2000; 275: 16064–16072.

    Google Scholar 

  230. Premkumar DR, Adhikary G, Overholt JL, Simonson MS, Cherniack NS, Prabhakar NR . Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv Exp Med Biol 2000; 475: 101–109.

    CAS  PubMed  Google Scholar 

  231. Ohtan N, Zebedee Z, Hout TJ, Stinson JA, Sugimoto M, Ohashi Y et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 2001; 409: 1067–1070.

    Google Scholar 

  232. Hu PP, Shen Z, Huang D, Liu Y, Counter C, Wang X . The MEK pathway is required for stimulation of p21WAF1/CIP1 by transforming growth factor-β. J Biol Chem 1999; 274: 35381–35387.

    CAS  PubMed  Google Scholar 

  233. Funaoka K, Shinodoh M, Yoshida K, Hanzawa M, Hida K, Nishikata S et al. Activation of the p21Waf1/Cip1 promoter by the ets oncogene family transcription factor E1AF. Biochem Biophys Res Comm 1997; 236: 79–82.

    CAS  PubMed  Google Scholar 

  234. Lallemand D, Spyrou G, Yaniv M, Pfarr CM . Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 1997; 14: 819–830.

    CAS  PubMed  Google Scholar 

  235. Chinenov Y, Kerppola TK . Close encounters of many kinds: Fos–Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20: 2438–2452.

    CAS  PubMed  Google Scholar 

  236. Jochum W, Passegué E, Wagner EF . AP-1 in mouse development and tumorigenesis. Oncogene 2001; 20: 2401–2412.

    CAS  PubMed  Google Scholar 

  237. Passegué E, Wagner EF . JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J 2000; 19: 2969–2979.

    PubMed  PubMed Central  Google Scholar 

  238. Shaulian E, Karin M . AP-1 in cell proliferation and survival. Oncogene 2001; 20: 2390–2400.

    CAS  PubMed  Google Scholar 

  239. Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M . Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 2000; 19: 2056–2068.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Schreck R, Kistler B, Wirth T . In: Papavassiliou AG (ed). Transcription factors in Eukaryotes, Austin, TX: RG Landes, 1997, pp 153–188.

    Google Scholar 

  241. Wisdom R, Johnson RS, Moore C . C-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 1999; 18: 188–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Kataoka K, Fujiwara KT, Noda M, Nishizawa M . MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 1994; 14: 7581–7591.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Kerppola TK, Curran T . Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun. Oncogene 1994; 9: 675–684.

    CAS  PubMed  Google Scholar 

  244. Van Dam H, Castellazzi M . Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene 2001; 20: 2453–2464.

    CAS  PubMed  Google Scholar 

  245. Mechta-Grigoriou F, Lallemand D, Pfarr CM, Yaniv M . Transformation by ras modifies AP1 composition and activity. Oncogene 1997; 14: 837–847.

    Google Scholar 

  246. Behrens A, Sibilia M, Wagner EF . Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21: 326–329.

    CAS  PubMed  Google Scholar 

  247. Passegué E, Jochum W, Schorpp-Kistner M, Möhle-teinlein U, Wagner EF . Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 2001; 104: 21–32.

    PubMed  Google Scholar 

  248. Pfarr CM, Mechta F, Spyrou G, Lallemand D, Carillo S, Yaniv M . Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 1994; 76: 747–760.

    CAS  PubMed  Google Scholar 

  249. Mechta-Grigoriou F, Gerald D, Yaniv M . The mammalian Jun proteins: redundancy and specificity. Oncogene 2001; 20: 2378–2389.

    CAS  PubMed  Google Scholar 

  250. Angel P, Hattori K, Smeal T, Karin M . The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 1988; 55: 875–885.

    CAS  PubMed  Google Scholar 

  251. Han TH, Prywes R . Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol Cell Biol 1995; 15: 2907–2915.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Chen J, Fujii K, Zhang L, Roberts T, Fu H . Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001; 98: 7783–7788.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991; 64: 573–584.

    CAS  PubMed  Google Scholar 

  254. Lin A, Frost J, Deng T, Smeal T, al-Alawi N, Kikkawa U et al. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 1992; 70: 777–789.

    CAS  PubMed  Google Scholar 

  255. Vogt PK . Jun, the oncoprotein. Oncogene 2001; 20: 2365–2377.

    CAS  PubMed  Google Scholar 

  256. Weitzman JB . Quick guide, Jnk. Curr Biol 2000; 10: R290.

    CAS  PubMed  Google Scholar 

  257. Binetruy B, Smeal T, Karin M . Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 1991; 351: 122–127.

    CAS  PubMed  Google Scholar 

  258. Leevers SJ, Marshall CJ . Activation of extracellular signal-regulated kinase, ERK2, by p21ras oncoprotein. EMBO J 1992; 11: 569–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Smeal T, Binetruy B, Mercola DA, Grover-Bardwick A, Heidecker G, Rapp UR et al. Oncoprotein-mediated signaling cascade stimulates c-Jun activity by phosphorylation of serine 63 and 73. Mol Cell Biol 1992; 12: 3507–3513.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C et al. Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem 1991; 266: 15277–15285.

    CAS  PubMed  Google Scholar 

  261. Chou SY, Baichwal V, Ferrell Jr JE . Inhibition of c-Jun DNA binding by mitogen-activated protein kinase. Mol Biol Cell 1992; 3: 1117–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR . Phosphorylation of c-jun mediated by MAP kinases. Nature 1991; 353: 670–674.

    CAS  PubMed  Google Scholar 

  263. Pulverer BJ, Hughes K, Franklin CC, Kraft AS, Leevers SJ, Woodgett JR . Co-purification of mitogen-activated protein kinases with phorbol ester-induced c-Jun kinase activity in U937 leukaemic cells. Oncogene 1993; 8: 407–415.

    CAS  PubMed  Google Scholar 

  264. Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodjett JR . Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 1994; 9: 59–70.

    CAS  PubMed  Google Scholar 

  265. Nasi S, Ciarapica R, Jucker R, Rosati J, Soucek L . Making decisions through Myc. FEBS Lett 2001; 490: 153–162.

    CAS  PubMed  Google Scholar 

  266. Amati B, Frank SR, Donjerkovic D, Taubert S . Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim Biophys Acta 2001; 1471: M135–M145.

    CAS  PubMed  Google Scholar 

  267. Prendergast GC . Mechanisms of apoptosis by c-Myc. Oncogene 1999; 18: 2967–2987.

    CAS  PubMed  Google Scholar 

  268. Facchini LM, Penn LZ . The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J 1998; 12: 633–651.

    CAS  PubMed  Google Scholar 

  269. Dang CV . c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999; 19: 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Iritani BM, Eisenman RN . c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci USA 1999; 96: 13180–13185.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Schmidt EV . The role of c-myc in cellular growth control. Oncogene 1999; 18: 2988–2996.

    CAS  PubMed  Google Scholar 

  272. Kim S, Li Q, Dang CV, Lee LA . Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci USA 2000; 97: 11198–11202.

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Daksis JI, Lu RY, Facchini LM, Marhin WW, Penn LJ . Myc induces cyclin D1 expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene 1994; 9: 3635–3645.

    CAS  PubMed  Google Scholar 

  274. Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 1999; 18: 5321–5333.

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Jansen-Durr P, Meichle A, Steiner P, Pagano M, Finke D, Botz J et al. Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 1993; 90: 682–686.

    Google Scholar 

  276. Hoang AT, Cohen KJ, Barrett JE, Bergstrom DA, Dang CV . Participation of cyclin A in Myc-induced apoptosis. Proc Natl Acad Sci USA 1994; 91: 6875–6879.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Pérez-Roger I, Solomon DLC, Sewing A, Land H . Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27Kip1 binding to newly formed complexes. Oncogene 1997; 14: 2373–2381.

    PubMed  Google Scholar 

  278. Perez-Roger I, Kim SH, Griffiths B, Sewing A, Land H . Cyclin D1 and D2 mediate myc-induced proliferation via sequestration of p27Kip1 and p21Cip1. EMBO J 1999; 18: 5310–5320.

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Born TL, Frost JA, Schönthal A, Prendergast GC, Feramisco JR . c-Myc cooperates with activated Ras to induce the cdc2 promoter. Mol Cell Biol 1994; 14: 5710–5718.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ et al. Identification of Cdk4 as a target of c-Myc. Proc Natl Acad Sci USA 2000; 97: 2229–2234.

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F et al. Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci USA 2001; 98: 4510–4515.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Yang W, Shen J, Wu M, Arsura M, FitzGerald M, Suldan Z et al. Repression of transcription of the p27Kip1 cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 2001; 20: 1688–1702.

    CAS  PubMed  Google Scholar 

  283. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J . TGF-β influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001; 3: 400–408.

    CAS  PubMed  Google Scholar 

  284. Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001; 3: 392–399.

    CAS  PubMed  Google Scholar 

  285. Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN et al. Expression analysis with oligonucleotide microarrays reveals that myc regulates genes involved in growth, cell cycle, signaling and adhesion. Proc Natl Acad Sci USA 2000; 97: 3260–3265.

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Claassen GF, Hann SR . Myc-mediated transformation: the repression connection. Oncogene 1999; 18: 2925–2933.

    CAS  PubMed  Google Scholar 

  287. Roy AL, Carruthers C, Gutjahr T, Roeder RG . Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 1993; 365: 359–361.

    CAS  PubMed  Google Scholar 

  288. Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB . c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 1994; 13: 4070–4079.

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Mateyak MK, Obaya AJ, Sedivy JM . c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 1999; 19: 4672–4683.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Polyak K, Kato J, Solomon MJ, Sherr CJ, Massague J, Roberts JM et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev 1994; 8: 9–22.

    CAS  PubMed  Google Scholar 

  291. Reynisdóttir I, Massagué J . The subcellular locations of p15Ink4b and p27Kip1 coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev 1997; 11: 492–503.

    PubMed  Google Scholar 

  292. Blain SW, Montalvo E, Massgué J . Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem 1997; 272: 25863–25872.

    CAS  PubMed  Google Scholar 

  293. Bazarov AV, Adachi S, Li S, Mateyak MK, Wei S, Sedivy JM . A modest reduction in c-Myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to Ras and Raf transformation. Cancer Res 2001; 61: 1178–1186.

    CAS  PubMed  Google Scholar 

  294. Ahamed S, Foster JS, Bukovsky A, Wimalasena J . Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Mol Carcinog 2001; 30: 88–98.

    CAS  PubMed  Google Scholar 

  295. O'Hagan RC, Ohh M, David G, de Alboran IM, Alt FW, Kaelin Jr WG et al. Myc-enhanced expression of Cul1 promotes ubiquitin-dependent proteolysis and cell cycle progression. Genes Dev 2000; 14: 2185–2191.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Weiss WA, Aldape K, Mohapatra G, Geuerstein BF, Bishop JM . Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 1997; 16: 2985–2995.

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Warner BJ, Blain SW, Seoane J, Massague J . Myc downregulation by transforming growth factor β required for activation of the p15Ink4b G1 arrest pathway. Mol Cell Biol 1999; 19: 5913–5922.

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Askew DS, Ashmun RA, Shimmons BC, Cleveland JL . Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 1991; 6: 1915–1922.

    CAS  PubMed  Google Scholar 

  299. Evan GI, Whllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    CAS  PubMed  Google Scholar 

  300. Janicke RU, Lee FH, Porter AG . Nuclear c-Myc plays an important role in the cytotoxicity of tumor necrosis factor alpha in tumor cells. Mol Cell Biol 1994; 14: 5661–5670.

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Klefstrom J, Vastrik I, Saksela E, Valle J, Eilers M, Alitalo K . c-Myc induces cellular susceptibility to the cytotoxic action of TNF-α. EMBO J 1994; 13: 5442–5450.

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Dong J, Naito M, Tsuruo T . c-Myc plays a role in cellular susceptibility to death receptor-mediated and chemotherapy-induced apoptosis in human monocytic leukemia U937 cells. Oncogene 1997; 15: 639–647.

    CAS  PubMed  Google Scholar 

  303. Soucie EL, Annis MG, Sedivy J, Filmus J, Leber B, Andrews DW et al. Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol Cell Biol 2001; 21: 4725–4736.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Reisman D, Elkind N, Roy B, Beamon J, Rotter V . c-Myc transactivates the p53 promoter through a required downstream CACGTG motif. Cell Growth Differ 1993; 4: 57–65.

    CAS  PubMed  Google Scholar 

  305. Roy B, Beamon J, Balint E, Reisman D . Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 1994; 14: 7805–7815.

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Oster SK, Marhin WW, Asker C, Facchini LM, Dion PA, Funa K et al. Myc is an essential negative regulator of platelet-derived growth factor beta receptor expression. Mol Cell Biol 2000; 20: 6768–6778.

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Baudino TA, Cleveland JL . The max network gone mad. Mol Cell Biol 2001; 21: 691–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Ayer DE, Kretzner L, Eisenman RN . Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 1993; 72: 211–222.

    CAS  PubMed  Google Scholar 

  309. Gregory MA, Hann SR . c-Myc proteolysis by the ubiquitin–proteosome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 2000; 20: 2423–2435.

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Luscher B, Kuenzel EA, Krebs EG, Eisenman RN . Myc oncoproteins are phosphorylated by casein kinase II. EMBO J 1989; 8: 1111–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Hagiwara T, Nakaya K, Nakamura Y, Nakajima H, Nishimura S, Tara Y . Specific phosphorylation of the acidic central region of the N-myc protein by casein kinase II. Eur J Biochem 1992; 209: 945–950.

    CAS  PubMed  Google Scholar 

  312. Berberich SJ, Cole MD . Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev 1992; 6: 166–176.

    CAS  PubMed  Google Scholar 

  313. Street AJ, Blackwood E, Luscher B, Eiseman RN . Mutational analysis of the carboxy-terminal casein kinase II phosphorylation site in human c-myc. Curr Top Microbiol Immunol 1990; 166: 251–258.

    CAS  PubMed  Google Scholar 

  314. Gupta S, Davis R . MAP kinase binds to the NH2-terminal activation domain of c-Myc. FEBS Lett 1994; 353: 281–285.

    CAS  PubMed  Google Scholar 

  315. Henriksson M, Barkardjiev A, Klein G, Luscher B . Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 1993; 8: 3199–3209.

    CAS  PubMed  Google Scholar 

  316. Seth A, Alvarez E, Gupta S, Davis RJ . A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression. J Biol Chem 1991; 266: 23521–23524.

    CAS  PubMed  Google Scholar 

  317. Seth A, Gonzlez FA, Gupta S, Raden DL, Davis RJ . Signal transduction within the nucleus by mitogen-activated protein kinase. J Biol Chem 1992; 267: 24796–24804.

    CAS  PubMed  Google Scholar 

  318. Bister K, Trachmann C, Jansen HW, Schroeer B, Patschinsky T . Structure of mutant and wild-type MC29 v-myc alleles and biochemical properties of their protein products. Oncogene 1987; 1: 97–109.

    CAS  PubMed  Google Scholar 

  319. Heaney ML, Pierce J, Parsons JT . Site-directed mutagenesis of the gag–myc gene of avian myelocytomatosis virus 29: biological activity and intracellular localization of structurally altered proteins. J Virol 1986; 60: 167–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Stone J, deLange T, Ramsay G, Jakobvits E, Bishop JM, Varmus H et al. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 1987; 7: 1697–1709.

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Chuang C-F, Ng S-Y . Functional divergence of the MAP kinase pathway: ERK1 and ERK2 activate specific transcription factors. FEBS Lett 1994; 346: 229–234.

    CAS  PubMed  Google Scholar 

  322. Zou X, Lin Y, Rudchenko S, Calame K . Positive and negative regulation of c-Myc transcription. Curr Top Microbiol Immunol 1997; 224: 57–66.

    CAS  PubMed  Google Scholar 

  323. Salghetti ES, Kim SY, Tansey WP . Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 1999; 18: 717–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Niklinski J, Claassen G, Meyers C, Gregory MA, Allegra CJ, Kaye FJ et al. Disruption of Myc-tubulin interaction by hyperphosphorylation of c-Myc during mitosis or by constitutive hyperphosphorylation of mutant c-Myc in Burkitt's lymphoma. Mol Cell Biol 2000; 20: 5276–5284.

    CAS  PubMed  PubMed Central  Google Scholar 

  325. Lai JH, Horvath G, Subleski J, Bruder J, Ghosh P, Tan TH . RelA is a potent transcriptional activator of the CD28 response element within the interleukin 2 promoter. Mol Cell Biol 1995; 15: 4260–4271.

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Kunsch C, Rosen CA . NF-κB subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 1993; 13: 6137–6146.

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Collart MA, Baeuerle P, Vassalli P . Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol 1990; 10: 1498–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Messer G, Weiss EH, Baeuerle PA . Tumor necrosis factor beta (TNF-β) induces binding of the NF-κB transcription factor to a high-affinity kappa B element in the TNF-β promoter. Cytokine 1990; 2: 389–397.

    CAS  PubMed  Google Scholar 

  329. Khachigian LM, Resnick N, Gimbrone MAJ, Collins T . Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear–stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Invest 1995; 96: 1169–1175.

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Chilov D, Kukk E, Taira S, Jeltsch M, Kaukonen J, Palotie A et al. Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem 1997; 272: 25176–25183.

    CAS  PubMed  Google Scholar 

  331. Duyao MP, Kessler DJ, Spicer DB, Sonenshein GE . Transactivation of the c-myc gene by HTLV-1 tax is mediated by NF-κB. Curr Top Microbiol Immunol 1992; 182: 421–424.

    CAS  PubMed  Google Scholar 

  332. Sun SC, Ganchi PA, Ballard DW, Greene WC . NF-κB controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 1993; 259: 1912–1915.

    CAS  PubMed  Google Scholar 

  333. Brown RT, Ades IA, Nordan RP . An acute phase response factor/NF-kappa B site downstream of the junB gene that mediates responsiveness to interleukin-6 in a murine plasmacytoma. J Biol Chem 1995; 270: 31129–31135.

    CAS  PubMed  Google Scholar 

  334. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M . NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 1999; 19: 2690–2698.

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Ben-Yosef T, Yanuka O, Halle D, Benvenisty N . Involvement of Myc targets in c-myc and N-myc induced human tumors. Oncogene 1998; 17: 165–171.

    CAS  PubMed  Google Scholar 

  336. Chen L, Glover JN, Hogan PG, Rao A, Harrison SC . Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 1998; 392: 42–48.

    CAS  PubMed  Google Scholar 

  337. Matsui K, Fine A, Zhu B, Marshak-Rothstein A, Ju ST . Identification of two NF-κB sites in mouse CD95 ligand (Fas ligand) promoter: functional analysis in T cell hybridoma. J Immunol 1998; 161: 3469–3473.

    CAS  PubMed  Google Scholar 

  338. Rao A, Luo C, Hogan PG . Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997; 15: 707–747.

    CAS  PubMed  Google Scholar 

  339. Rooney JW, Hoey T, Gilmcher LH . Coordinate and cooperative roles for NF-AT and AP-1 in the regulation of the murine IL-4 gene. Immunity 1995; 2: 473–483.

    CAS  PubMed  Google Scholar 

  340. Duncliffe KN, Bert AG, Vadas MA, Cockerill PN . A T cell-specific enhancer in the interleukin-3 locus is activated cooperatively by Oct and NFAT elements within a DNase I-hypersensitive site. Immunity 1997; 6: 175–185.

    CAS  PubMed  Google Scholar 

  341. Stranick KS, Zambas DN, Uss AS, Egan RW, Billah MM, Umland SP . Identification of transcription factor binding sites important in the regulation of the human interleukin-5 gene. J Biol Chem 1997; 272: 16453–16465.

    CAS  PubMed  Google Scholar 

  342. Tsai EY, Jain J, Pesavento PA, Rao A, Goldfeld AE . Tumor necrosis factor alpha gene regulation in activated T cells involves ATF-2/Jun and NFATp. Mol Cell Biol 1996; 16: 459–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  343. Clark W, Black E, MacLaren A, Kruse U, LaThangue N, Vogt P et al. v-Jun overrides the mitogen dependence of S-phase entry by deregulating retinoblastoma protein phosphorylation and E2F-pocket protein interactions as a consequence of enhanced cyclin E-cdk2 catalytic activity. Mol Cell Biol 2000; 20: 2529–2542.

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Kolbus A, Herr I, Schreiber M, Debatin KM, Wagner EF, Angel P . c-Jun-dependent CD95-L expression is a rate-limiting step in the induction of apoptosis by alkylating agents. Mol Cell Biol 2000; 20: 575–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  345. Archer SY, Johnson JJ, Kim H, Hodin RA . p21 gene regulation during enterocyte differentiation. J Surg Res 2001; 98: 4–8.

    CAS  PubMed  Google Scholar 

  346. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12: 2424–2433.

    CAS  PubMed  PubMed Central  Google Scholar 

  347. Galaktionov K, Chen D, Beach D . Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 1996; 382: 511–517.

    CAS  PubMed  Google Scholar 

  348. Roskoski Jr R, Ritchie PA . Time-dependent inhibition of protein farnesyltransferase by a benzodiazepine peptide mimetic. Biochemistry 2001; 40: 9329–9335.

    CAS  PubMed  Google Scholar 

  349. Boulanger EB, Gachot B, Verkarre V, Valensi F, Brousse N, Hermine O . ‘All-trans-retinoic acid in the treatment of Kimura's disease’. Am J Hematol 2002; 71: 66.

    PubMed  Google Scholar 

  350. Barthomeuf C, Debiton E, Mshvildadze V, Kemertelidze E, Balansard G . In vitro activity of hederacolchisid A1 compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells. Planta Med 2002; 68: 672–675.

    CAS  PubMed  Google Scholar 

  351. Whiteman M, Hooper DC, Scott GS, Koprowski H, Halliwell B . Inhibition of hypochlorous acid-induced cellular toxicity by nitrite. Proc Natl Acad Sci USA 2002; 99: 12061–12066.

    CAS  PubMed  PubMed Central  Google Scholar 

  352. Crespo NC, Ohkanda J, Yen TJ, Hamilton AD, Sebti SM . The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem 2001; 276: 16161–1667.

    CAS  Google Scholar 

  353. Sun J, Blaskovich MA, Knowles D, Qian Y, Ohkanda J, Bailey RD et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. Cancer Res 1999; 59: 4919–4926.

    CAS  PubMed  Google Scholar 

  354. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM . Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 1997; 272: 14093–14097.

    CAS  PubMed  Google Scholar 

  355. Yoshimatsu K, Nagausu T . Anti tumor activity of farnesyl transferase inhibitor. Gan To Kagaku Ryoho 1997; 24: 145–155.

    CAS  PubMed  Google Scholar 

  356. Nagasu T, Yoshimatsu K, Rowell C, Lewis MD, Garcia AM . Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res 1995; 55: 5310–5314.

    CAS  PubMed  Google Scholar 

  357. Bulus NM, Sheng HM, Sizemore N, Oldham SM, Barnett JV, Coffey RJ et al. Ras-mediated suppression of TGFBetaRII expression in intestinal epithelial cells involves Raf-independent signaling. Neoplasia 2000; 2: 357–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  358. Lavelle F . Inhibitors of farnesyl transferase in oncology: from basic research to pharmaceutical research. C R Seances Soc Biol Fil 1997; 191: 211–219 (Review).

    CAS  PubMed  Google Scholar 

  359. James GL, Goldstein JL, Brown MS . Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem 1995; 270: 6221–6226.

    CAS  PubMed  Google Scholar 

  360. Cortes JE, Kurzrock R, Kantarjian HM . Farnesyltransferase inhibitors: novel compounds in development for the treatment of myeloid malignancies. Semin Hematol 2002; 39: 26–30.

    CAS  PubMed  Google Scholar 

  361. Wright JJ, Zerivitz K, Gravell AE, Cheson BD . Clinical trials referral resource. Current clinical trials of R115777 (Zarnestra). Oncology (Huntingt) 2002; 16: 930–937.

    Google Scholar 

  362. Hahn SM, Bernhard E, McKenna WG . Farnesyltransferase inhibitors. Semin Oncol 2001; 28: 86–93 (Review).

    CAS  PubMed  Google Scholar 

  363. Kelland LR, Smith V, Valenti M, Patterson L, Clarke PA, Detre S et al. Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin Cancer Res 2001; 7: 3544–3550.

    CAS  PubMed  Google Scholar 

  364. Owa T, Yoshino H, Yoshimatsu K, Nagasu T . Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Curr Med Chem 2001; 8: 1487–1503 (Review).

    CAS  PubMed  Google Scholar 

  365. Zujewski J, Horak ID, Bol CJ, Woestenborghs R, Bowden C, End DW et al. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 2000; 18: 927–941.

    CAS  PubMed  Google Scholar 

  366. Hoover RR, Mahon FX, Melo JV, Daley GQ . Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002; 100: 1068–1071.

    CAS  PubMed  Google Scholar 

  367. Karp JE, Kaufmann SH, Adjei AA, Lancet JE, Wright JJ, End DW . Current status of clinical trials of farnesyltransferase inhibitors. Curr Opin Oncol 2001; 13: 470–476.

    CAS  PubMed  Google Scholar 

  368. Feldkamp MM, Lau N, Roncari L, Guha A . Isotype-specific Ras.GTP-levels predict the efficacy of farnesyl transferase inhibitors against human astrocytomas regardless of Ras mutational status. Cancer Res 2001; 61: 4425–4431.

    CAS  PubMed  Google Scholar 

  369. Adjei AA, Davis JN, Erlichman C, Svingen PA, Kaufmann SH . Comparison of potential markers of farnesyltransferase inhibition. Clin Cancer Res 2000; 6: 2318–2325.

    CAS  PubMed  Google Scholar 

  370. Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ . Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 2001; 15: 1398–1407.

    CAS  PubMed  Google Scholar 

  371. Morgan MA, Dolp O, Reuter CW . Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001; 979: 1823–1834.

    Google Scholar 

  372. Mazet JL, Padieu M, Osman H, Maume G, Mailliet P, Dereu N et al. Combination of the novel farnesyltransferase inhibitor RPR130401 and the geranylgeranyltransferase-1 inhibitor GGTI-298 disrupts MAP kinase activation and G(1)–S transition in Ki-Ras-overexpressing transformed adrenocortical cells. FEBS Lett. 1999; 460: 235–240.

    CAS  PubMed  Google Scholar 

  373. Hahn SM, Bernhard E, McKenna WG . Farnesyltransferase inhibitors. Semin Oncol 2001; 28: 86–93 (Review).

    CAS  PubMed  Google Scholar 

  374. Owa T, Yoshino H, Yoshimatsu K, Nagasu T . Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Cur Med Chem 2001; 8: 1487–1503 (Review).

    CAS  Google Scholar 

  375. Hunt JT, Ding CZ, Batorsky R, Bednarz M, Bhide R, Cho Y et al. Discovery of (R)-7-cyano-2,3,4,5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3- (phenylmethyl)-4-(2-thienylsulfonyl)-1,H-14-benzodiazepine (BMS-214662) a farnesyltransferase inhibitor with potent preclinical antitumor activity. J Med Chem. 2000; 43: 3587–3595.

    CAS  PubMed  Google Scholar 

  376. Bayes M, Rabasseda X, Prous JR . Gateways to clinical trials. June 2002. Methods Find Exp Clin Pharmacol 2002; 24: 291–327.

    CAS  PubMed  Google Scholar 

  377. Singh SB, Lingham RB . Current progress on farnesyl protein transferase inhibitors. Opin Curr Opin Drug Discov Devel 2002; 5: 225–244.

    CAS  PubMed  Google Scholar 

  378. Heimbrook DC, Huber HE, Stirdivant SM, Claremon D, Liverton N, Patrick DR et al. Identification of potent, selective kinase inhibitors of Raf. Proc Amer Assoc Cancer Res 1998; 39: 558.

    Google Scholar 

  379. Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Boyle FT, Hewitt N et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem Biol 1999; 6: 559–588.

    CAS  PubMed  Google Scholar 

  380. Lyons JF, Wilhelm S, Hibner B, Bollag G . Discovery of a novel Raf kinase inhibitor. Endocr-Related Cancer 2001; 8: 219–225.

    CAS  Google Scholar 

  381. Wilhelm S, Chien DS . BAY 43-9006: preclinical data. Curr Pharm Des 2002; 8: 2255–2257.

    CAS  PubMed  Google Scholar 

  382. Hotte SJ, Hirte HW . BAY 43-9006: early clinical data in patients with advanced solid malignancies. Curr Pharm Des 2002; 8: 99–110.

    Google Scholar 

  383. Lee JT, McCubrey JA . Targeting the Raf kinase cascade in cancer therapy – novel molecular targets and therapeutic strategies. Exp Opin 2002; 6: 1–20.

    Google Scholar 

  384. Tulcher AW, Reyno L, Venner PM, Ernst SD, Moore M, Geary RS et al. A randomized phase II and pharmacolinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2002; 8: 2530–2535.

    Google Scholar 

  385. Tamm I, Dorken B, Hartmann G . Antisense therapy in oncology: new hope for an old idea? Lancet 2001; 358: 489–497.

    CAS  PubMed  Google Scholar 

  386. McPhillips F, Mullen P, Monia BP, Ritchie AA, Dorr FA, Smyth JF et al. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer 2001; 85: 1753–1758.

    CAS  PubMed  PubMed Central  Google Scholar 

  387. Lau QC, Brusselbach S, Muller R . Abrogation of c-Raf expression induces apoptosis in tumor cells. Oncogene 1998; 16: 1899–1902.

    CAS  PubMed  Google Scholar 

  388. Krause SW, Neumann C, Soruri A, Mayer S, Peters JH, Andreesen R . The treatment of patients with disseminated malignant melanoma by vaccination with autologous cell hybrids of tumor cells and dendritic cells. J Immunother 2002; 25: 421–428.

    CAS  PubMed  Google Scholar 

  389. Donadieu J, Hill C . Clinical trials in childhood acute lymphoblastic leukemia: a common prognostic classification and a common induction therapy are now warranted. J Pediatr Hematol Oncol 2002; 24: 424–4255.

    PubMed  Google Scholar 

  390. Sakamoto J, Teramukai S, Nakazato H, Sato Y, Uchino J, Taguchi T et al. Efficacy of adjuvant immunochemotherapy with OK-432 for patients with curatively resected gastric cancer: a meta-analysis of centrally randomized controlled clinical trials. J Immunother 2002; 25: 405–412.

    CAS  PubMed  Google Scholar 

  391. Schio L, Chatreaux F, Loyau V, Murer M, Ferreira A, Mauvais P et al. Fine tuning of physico-chemical parameters to optimise a new series of novobiocin analogues. Bioorg Med Chem Lett 2001; 11: 1461–1464.

    CAS  PubMed  Google Scholar 

  392. Marcu MG, Schulte TW, Neckers L . Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 2000; 92: 242–248.

    CAS  PubMed  Google Scholar 

  393. Maxwell A . The interaction between coumarin drugs and DNA gyrase. Mol Microbiol 1993; 9: 681–686 (Review).

    CAS  PubMed  Google Scholar 

  394. Lafitte D, Lamour V, Tsvetkov PO, Makarov AA, Klich M, Deprez P et al. DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5'-methyl group of the noviose. Biochemistry 2002; 41: 71217–71223.

    Google Scholar 

  395. Blance SJ, Williams NL, Preston ZA, Bishara J, Smyth MS, Maxwell A . Temperature-sensitive suppressor mutations of the Escherichia coli DNA gyrase B protein. Protein Sci 2000; 9: 1035–1037.

    CAS  PubMed  PubMed Central  Google Scholar 

  396. Shiotsu Y, Neckers LM, Wortman I, An WG, Schulte TW, Soga S et al. Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr–Abl with Hsp90 complex. Blood 2000; 96: 2284–2291.

    CAS  PubMed  Google Scholar 

  397. Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H et al. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res 1999; 59: 2931–2938.

    CAS  PubMed  Google Scholar 

  398. Murren JR,, DiStasio SA, Lorico A, McKeon A, Zuhowski EG, Egorin MJ et al. Phase I and pharmacokinetic study of novobiocin in combination with VP-16 in patients with refractory malignancies. Cancer J 2000; 6: 256–265.

  399. Gosland M, Lum B, Schimmelpfennig J, Baker J, Doukas M . Insights into mechanisms of cisplatin resistance and potential for its clinical reversal. Pharmacotherapy 1996; 16: 16–39.

    CAS  PubMed  Google Scholar 

  400. Ellis GK, Crowley J, Livingston RB, Goodwin JW, Hutchins L, Allen A . Cisplatin and novobiocin in the treatment of non-small cell lung cancer. A Southwest Oncology Group study. Cancer 1991; 67: 2969–2973.

    CAS  PubMed  Google Scholar 

  401. Eder JP, Wheeler CA, Teicher BA, Schnipper LE . A phase I clinical trial of novobiocin, a modulator of alkylating agent cytotoxicity. Cancer Res 1989; 49: 2578–2583.

    Google Scholar 

  402. Drake FH, Hofmann GA, Mong SM, Bartus JO, Hertzberg RP, Johnson RK et al. In vitro and intracellular inhibition of topoisomerase II by the antitumor agent merbarone. Cancer Res. 1989; 49: 2578–2583.

    CAS  PubMed  Google Scholar 

  403. Blagosklonny MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462 (Review).

    CAS  PubMed  Google Scholar 

  404. Neckers L . Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med. 2002; 8: S55–S61 (Review).

    CAS  PubMed  Google Scholar 

  405. Workman P, Maloney A . HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Exp Opin Biol Ther 2002; 2: 3–24.

    Google Scholar 

  406. Piper PW . The Hsp90 chaperone as a promising drug target. Curr Opin Invest Drugs 2001; 2: 1606–1610 (Review).

    CAS  Google Scholar 

  407. Bagatell R, Khan O, Paine-Murrieta G, Taylor CW, Akinaga S, Whitesell L . Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer. Clin Cancer Res 2001; 7: 2076–2084.

    CAS  PubMed  Google Scholar 

  408. Knight EL, Warner AJ, Maxwell A, Prigent SA . Chimeric VEGFRs are activated by a small-molecule dimerizer and mediate downstream signalling cascades in endothelial cells. Oncogene 2000; 19: 5398–5405.

    CAS  PubMed  Google Scholar 

  409. Mazumder A, Neamati N, Sommadossi JP, Gosselin G, Schinazi RF, Imbach JL et al. Effects of nucleotide analogues on human immunodeficiency virus type 1 integrase. Mol Pharmacol 1996; 49: 621–628.

    CAS  PubMed  Google Scholar 

  410. Farrar MA, Tian J, Perlmutter RM . Membrane localization of Raf assists engagement of downstream effectors. J Biol Chem 2000; 275: 31318–31324.

    CAS  PubMed  Google Scholar 

  411. Kume A, Ito K, Ueda Y, Hasegawa M, Urabe M, Mano H et al. A G-CSF receptor-gyrase B fusion gene: a new type of molecular switch for expansion of genetically modified hematopoietic cells. Biochem Biophys Res Commun 1999; 260: 9–12.

    CAS  PubMed  Google Scholar 

  412. Mohi MG, Arai K, Watanabe S . Activation and functional analysis of Janus kinase 2 in BA/F3 cells using the coumermycin/gyrase B system. Mol Biol Cell 1998; 9: 3299–3308.

    CAS  PubMed  PubMed Central  Google Scholar 

  413. Drummond MW, Holyoake TL . Tyrosine kinase inhibitors in the treatment of chronic myeloid leukaemia: so far so good. Blood Rev 2001; 15: 85–95 (Review).

    CAS  PubMed  Google Scholar 

  414. Schulte TW, Neckers LM . The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 1998; 42: 273–279.

    CAS  PubMed  Google Scholar 

  415. Ortaldo JR,, Mason AT, Longo DL, Beckwith M, Creekmore SP, McVicar DW . T cell activation via the disialoganglioside GD3: analysis of signal transduction. J Leukocyte Biol 1996; 60: 533–539.

    CAS  PubMed  Google Scholar 

  416. Blagosklonny MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462 (Review).

    CAS  PubMed  Google Scholar 

  417. Roginskaya V, Zuo S, Caudell E, Nambudiri G, Kraker AJ, Corey SJ . Therapeutic targeting of Src-kinase Lyn in myeloid leukemic cell growth. Leukemia 1999; 13: 855–861.

    CAS  PubMed  Google Scholar 

  418. Dimitroff CJ, Klohs W, Sharma A, Pera P, Driscoll D, Veith J et al. Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Invest New Drugs 1999; 17: 121–135.

    CAS  PubMed  Google Scholar 

  419. Panek RL, Lu GH, Klutchko SR, Batley BL, Dahring TK, Hamby JM et al. In vitro pharmacological characterization of PD 166285, a new nanomolar potent and broadly active protein tyrosine kinase inhibitor. J Pharmacol Exp Ther 1997; 283: 1433–1444.

    CAS  PubMed  Google Scholar 

  420. Zheleznova NN, Melikova MS, Nikol'skii NN, Kornilova ES . [The role of Src-kinase in the regulation of endocytosis of EGF-receptor complexes. I. Dynamics of EGF internalization, recycling, sorting, and degradation during inhibition of Src-kinase activity]. Tsitologiia 2001; 43: 1136–1145.

    CAS  PubMed  Google Scholar 

  421. Melikova MS, Zheleznova NN, Nikol'skii NN, Kornilova ES . [The role of Src-kinase in the regulation of endocytosis of EGF-receptor complexes. Distribution of clathrin after stimulation of EGR endocytosis in various cell lines during inhibition of Src-kinase activity]. Tsitologiia 2001; 43: 1146–1152.

    CAS  PubMed  Google Scholar 

  422. Vasilenko KP, Butylin PA, Arnautov AM, Nikolskii NN . The role of SRC kinase in activation of transcription factor STAT1. Tsitologiia 2001; 43: 1031–1037.

    CAS  PubMed  Google Scholar 

  423. Freitas F, Jeschke M, Majstorovic I, Mueller DR, Schindler P, Voshol H et al. Fluoroaluminate stimulates phosphorylation of p130 Cas and Fak and increases attachment and spreading of preosteoblastic MC353-E1 cells. Bone 2002; 30: 99–108.

    CAS  PubMed  Google Scholar 

  424. Olayioye MA, Badache A, Daly JM, Hynes NE . An essential role for Src kinase in ErbB receptor signaling through the MAPK pathway. Exp Cell Res 2001; 267: 81–87.

    CAS  PubMed  Google Scholar 

  425. Johnson L, De Moliner E, Brown N, Song H, Barford D, Endicott J et al. Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. Pharmacol Ther 2002; 93: 113.

    CAS  PubMed  Google Scholar 

  426. Swannie HC, Kaye SB . Protein kinase C inhibitors. Curr Oncol Rep 2002; 4: 37–46 (Review).

    PubMed  Google Scholar 

  427. Carter CA . Protein kinase C as a drug target: implications for drug or diet prevention and treatment of cancer. Curr Drug Targets 2000; 1: 163–183 (Review).

    CAS  PubMed  Google Scholar 

  428. Stepczynska A, Lauber K, Engels IH, Janssen O, Kabelitz D, Wesselborg S et al. Staurosporine and conventional anticancer drugs induce overlapping, yet distinct pathways of apoptosis and caspase activation. Oncogene 2001; 20: 1193–1202.

    CAS  PubMed  Google Scholar 

  429. Kornblau SM, Konopleva M, Andreeff M . Apoptosis regulating proteins as targets of therapy for haematological malignancies. Exp Opin Invest Drugs 1999; 8: 2027–2057.

    CAS  Google Scholar 

  430. Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A et al. PKC412 – a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des 2000; 15: 17–28K.

    CAS  PubMed  Google Scholar 

  431. Grosios K . UCN-01 Kyowa Hakko Kogyo Co. Curr Opin Invest Drugs 2001; 2: 287–297 (Review).

    CAS  Google Scholar 

  432. Senderowicz AM . The cell cycle as a target for cancer therapy: basic and clinical findings with the small molecule inhibitors flavopiridol and UCN-01. Oncologist 2002; 2: 12–19.

    Google Scholar 

  433. Sato S, Fujita N, Tsuruo T . Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 2002; 21: 1727–1738.

    CAS  PubMed  Google Scholar 

  434. Goekjian PG, Jirousek MR . Protein kinase C inhibitors as novel anticancer drugs. Exp Opin Invest Drugs 2001; 10: 2117–2140 (Review).

    CAS  Google Scholar 

  435. Byrd JC, Shinn C, Willis CR, Flinn IW, Lehman T, Sausville E et al. UCN-01 induces cytotoxicity toward human CLL cells through a p53-independent mechanism. Exp Hematol 2001; 29: 703–708.

    CAS  PubMed  Google Scholar 

  436. Ho DT, Roberge M . The antitumor drug fostriecin induces vimentin hyperphosphorylation and intermediate filament reorganization. Carcinogenesis 1996; 17: 967–972.

    CAS  PubMed  Google Scholar 

  437. Pederson SF, Varming C, Christensen ST, Hoffmann EK . Mechanisms of activation of NHE by cell shrinkage and by calyculin A in Ehrlich ascites tumor cells. J Membrane Biol 2002; 189: 67–81.

    CAS  Google Scholar 

  438. Avdi NJ, Malcolm KC, Nick JA, Worthen GS . A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH2-terminal kinase pathway in human neutrophils. J Biol Chem 2002; 277: 40687–40696.

    CAS  PubMed  Google Scholar 

  439. Garcia L, Garcia F, Llorens F, Unzeta M, Itarte E, Gomez N . PP1/PP2A phosphatases inhibitors okadaic acid and calyculin A block ERK5 activation by growth factors and oxidative stress. FEBS Lett 2002; 523: 90–94.

    CAS  PubMed  Google Scholar 

  440. Feschenko MS, Stevenson E, Nairn AC, Sweadner KJ . A novel cAMP-stimulated pathway in protein phosphatase 2A activation. J Pharmacol Exp Ther 2002; 302:111–118.

    CAS  PubMed  Google Scholar 

  441. Shao J, Hartson SD, Matts RL . Evidence that protein phosphatase 5 functions to negatively modulate the maturation of the Hsp90-dependent heme-regulated eIF2alpha kinase. Biochemistry 2002; 41: 6770–6779.

    CAS  PubMed  Google Scholar 

  442. Lankoff A, Banasik A, Nowak M . Protective effect of melatonin against nodularin-induced oxidative stress. Arch Toxicol 2002; 76: 158–165.

    CAS  PubMed  Google Scholar 

  443. Fladmark KE, Brustugun OT, Mellgren G, Krakstad C, Boe R, Vintermyr OK et al. Ca2+/calmodulin-dependent protein kinase II is required for microcystin-induced apoptosis. J Bio Chem 2002; 277: 2804–2811.

    CAS  Google Scholar 

  444. Yea SS, Kim HM, Oh HM, Paik KH, Yang KH . Microcystin-induced down-regulation of lymphocyte functions through reduced IL-2 mRNA stability. Toxicol Lett 2001; 122: 21–31.

    CAS  PubMed  Google Scholar 

  445. Mikhailov A, Harmala-Brasken AS, Polosukhina E, Hanski A, Wahlsten M, Sivonen K et al. Production and specificity of monoclonal antibodies against nodularin conjugated through N-methyldehydrobutyrine. Toxicon 2001; 39: 1453–1459.

    CAS  PubMed  Google Scholar 

  446. Gutzkow KB, Naderi S, Blomhoff HK . Forskolin-mediated G1 arrest in acute lymphoblastic leukaemia cells: phosphorylated pRB sequesters E2Fs. J Cell Sci 2002; 115: 1073–1082.

    CAS  PubMed  Google Scholar 

  447. Chiang CW, Harris G, Ellig C, Masters SC, Subramanian R, Shenolikar S et al. Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 2001; 97: 1289–1297.

    CAS  PubMed  Google Scholar 

  448. Feschenko MS, Stevenson E, Nairn AC, Sweadner KJ . A novel cAMP-stimulated pathway in protein phosphatase 2A activation. J Pharmacol Exp Ther 2002; 302: 111–118.

    CAS  PubMed  Google Scholar 

  449. Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS et al. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell 2002; 9: 761–771.

    CAS  PubMed  Google Scholar 

  450. McCluskey A, Sim AT, Sakoff JA . Serine–threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 2002; 45: 1151–1175 (Review).

    CAS  PubMed  Google Scholar 

  451. Resjo S, Goransson O, Harndahl L, Zolnierowicz S, Manganiello V, Degerman E . Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal 2002; 14: 231–238.

    CAS  PubMed  Google Scholar 

  452. Kikuchi K, Shima H, Mitsuhashi S, Suzuki M, Oikawa H . The apoptosis-inducing activity of the two protein phosphatase inhibitors, tautomycin and thyrsiferyl 23-acetate, is not due to the inhibition of protein phosphatases PP1 and PP2A (review). Int J Mol Med 1999; 4: 395–401 (Review).

    CAS  PubMed  Google Scholar 

  453. Matsuzawa S, Kawamura T, Mitsuhashi S, Suzuki T, Matsuo Y, Suzuki M et al. Thyrsiferyl 23-acetate and its derivatives induce apoptosis in various T- and B-leukemia cells. Bioorg Med Chem 1999; 7: 381–387.

    CAS  PubMed  Google Scholar 

  454. Matsuzawa S, Suzuki T, Suzuki M, Matsuda A, Kawamura T, Mizuno Y et al. Thyrsiferyl 23-acetate is a novel specific inhibitor of protein phosphatase PP2A. FEBS Lett 1994; 356: 272–274.

    CAS  PubMed  Google Scholar 

  455. Lee S, Kho Y, Min B, Kim J, Na M, Kang S et al. Cytotoxic triterpenoides from Alismatis rhizoma. Arch Pharm Res 2001; 24: 524–526.

    CAS  PubMed  Google Scholar 

  456. Matsuda H, Kageura T, Toguchida I, Murakami T, Kishi A, Yoshikawa M . Effects of sesquiterpenes and triterpenes from the rhizome of Alisma orientale on nitric oxide production in lipopolysaccharide-activated macrophages: absolute stereostructures of alismaketones-B 23-acetate and -C 23-acetate. Bioorg Med Chem Lett 1999; 9: 3081–3086.

    CAS  PubMed  Google Scholar 

  457. Ito E, Takai A, Kondo F, Masui H, Imanishi S, Harada K . Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon 2002; 40: 1017–1025.

    CAS  PubMed  Google Scholar 

  458. Pflugmacher S . Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 2002; 17: 407–413.

    CAS  PubMed  Google Scholar 

  459. Mankiewicz J, Walter Z, Tarczynska M, Palyvoda O, Wojtysiak-Staniaszczyk M, Zalewski M . Genotoxicity of cyanobacterial extracts containing microcystins from Polish water reservoirs as determined by SOS chromotest and comet assay. Environ Toxicol 2002; 17: 341–350.

    CAS  PubMed  Google Scholar 

  460. Metcalf JS, Lindsay J, Beattie KA, Birmingham S, Saker ML, Torokne AK, Codd GA . Toxicity of cylindrospermopsin to the brine shrimp Artemia salina: comparisons with protein synthesis inhibitors and microcystins. Toxicon 2002; 40: 1115–1120.

    CAS  PubMed  Google Scholar 

  461. Larsen AK, Moller MT, Blankson H, Samari HR, Holden L, Seglen PO . Naringin-sensitive phosphorylation of plectin, a cytoskeletal cross-linking protein, in isolated rat hepatocytes. J Biol Chem 2002; 277: 34826–34835.

    CAS  PubMed  Google Scholar 

  462. Cheng A, Balczon R, Zuo Z, Koons JS, Walsh AH, Honkanen RE . Fostriecin-mediated G2-M-phase growth arrest correlates with abnormal centrosome replication, the formation of aberrant mitotic spindles, and the inhibition of serine/threonine protein phosphatase activity. Cancer Res 1998; 58: 3611–3619.

    CAS  PubMed  Google Scholar 

  463. Tentler JJ, Hadcock JR, Gutierrez-Hartmann A . Somatostatin acts by inhibiting the cyclic 3′,5′-adenosine monophosphate (cAMP)/protein kinase A pathway, cAMP response element-binding protein (CREB) phosphorylation, and CREB transcription potency. Mol Endocrinol 1997; 11: 859–866.

    CAS  PubMed  Google Scholar 

  464. Ho DT, Roberge M . The antitumor drug fostriecin induces vimentin hyperphosphorylation and intermediate filament reorganization. Carcinogenesis 1996; 17: 967–972.

    CAS  PubMed  Google Scholar 

  465. English JM, Cobb MH . Pharmacological inhibitors of MAPK pathways. Trends Pharmcol Sci 2002; 23: 40–45.

    CAS  Google Scholar 

  466. Brinkmeier T, Frosch PJ . [Oral antibiotics with antiinflammatory/immunomodulatory effects in the treatment of various dermatoses]. Hautarzt 2002; 53: 456–465.

    CAS  PubMed  Google Scholar 

  467. Dias JC, Silveira AC, Schofield CJ . The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz 2002; 97: 603–612.

    CAS  PubMed  Google Scholar 

  468. Gregianin LJ, Brunetto AL, Di Leone L, Lurito JT, Santos PP, Schwartsmann G et al. Clinical and pharmacokinetic study of fractionated doses of oral etoposide in pediatric patients with advanced malignancies. Med Sci Monit 2002; 8P: 170–177.

    Google Scholar 

  469. Sanchez O, Nunes H, Sitbon O, Garcia G, Simonneau G, Humbert M . [Pulmonary hypertension associated with systemic sclerosis]. Ann Med Intern (Paris) 2002; 153: 250–259.

    Google Scholar 

  470. Mansat-De Mas V, Hernandez H, Plo I, Bezombes C, Maestre N et al. Protein kinase C {zeta} mediated Raf-1/extracellular-regulated kinase activation by daunorubicin. Blood 2002; 24: 646–653.

    Google Scholar 

  471. Pae HO, Oh GS, Kim NY, Shin MK, Lee HS, Yun YG et al. Roles of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase in apoptosis of human monoblastic leukemia U937 cells by lectin-II isolated from Korean mistletoe. In Vitro Mol Toxicol 2001; 14: 99–106.

    CAS  Google Scholar 

  472. Koschmieder S, Hofmann WK, Kunert J, Wagner S, Ballas K, Seipelt G et al. TGF beta-induced SMAD2 phosphorylation predicts inhibition of thymidine incorporation in CD34+ cells from healthy donors, but not from patients with AML after MDS. Leukemia 2001; 15: 942–949.

    CAS  PubMed  Google Scholar 

  473. Kalina U, Koschmieder S, Hofmann WK, Wagner S, Kauschat D, Hoelzer D et al. Transforming growth factor-beta1 interferes with thrombopoietin-induced signal transduction in megakaryoblastic and erythroleukemic cells. Exp Hematol 2001; 29: 602–608.

    CAS  PubMed  Google Scholar 

  474. Mayer IA, Verma A, Grumbach IM, Uddin S, Lekmine F, Ravandi F et al. The p38 MAPK pathway mediates the growth inhibitory effects of interferon-alpha in BCR–ABL-expressing cells. J Biol Chem 2001; 276: 28570–28577.

    CAS  PubMed  Google Scholar 

  475. Morgan MA, Dolp O, Reuter CW . Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001; 97: 1823–1834.

    CAS  PubMed  Google Scholar 

  476. Sausville EA, El-Sayed Y, Monga M, Kim G . Signal transduction directed cancer treatments. Annu Rev Pharmacol Toxicol 2003; 43: 199–231.

  477. Liu JC, Baker RE, Sun C, Sundmark VC, Elsholtz HP . Activation of Go-coupled dopamine D2 receptors inhibits ERK1/ERK2 in pituitary cells. A key step in the transcriptional suppression of the prolactin gene. J Biol Chem 2002; 277: 35819–35825.

    CAS  PubMed  Google Scholar 

  478. Squires MS, Nixon PM, Cook SJ . Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1. Biochem J 2002; 366, 673–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  479. Milella M, Estrov Z, Kornblau SM, Carter BZ, Konopleva M, Tari A et al. Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood 2002; 99: 3461–3464.

    CAS  PubMed  Google Scholar 

  480. Smith V, Rowlands MG, Barrie E, Workman P, Kelland LR . Establishment and characterization of acquired resistance to the farnesyl protein transferase inhibitor r115777 in a human colon cancer cell line. Clin Cancer Res 2002; 8: 2002–2009.

    CAS  PubMed  Google Scholar 

  481. Fitzgerald EM . The presence of Ca(2−) channel beta subunit is required for mitogen-activated protein kinase (MAPK)-dependent modulation of alpha 1B Ca(2+) channels in COS-7 cells. J Physiol 2002; 543: 425–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  482. Bowden ET, Stoica GE, Wellstein A . Anti-apoptotic signaling of pleiotrophin through its receptor, anaplastic lymphoma kinase. J Biol Chem 2002; 277: 35862–35868.

    CAS  PubMed  Google Scholar 

  483. Shi Y, Hsu JH, Hu L, Gera J, Lichtenstein A . Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J Biol Chem 2002; 277: 15712–15720.

    CAS  PubMed  Google Scholar 

  484. Lu H, Guizzetti M, Costa LG . Inorganic lead activates the mitogen-activated protein kinase kinase-mitogen-activated protein kinase-p90(RSK) signaling pathway in human astrocytoma cells via a protein kinase C-dependent mechanism. J Pharmacol Exp Ther 2002; 300: 818–823.

    CAS  PubMed  Google Scholar 

  485. Ding S, Chamberlain M, McLaren A, Goh L, Duncan I, Wolf CR . Cross-talk between signalling pathways and the multidrug resistant protein MDR-1. Br J Cancer 2001; 85: 1175–1184.

    CAS  PubMed  PubMed Central  Google Scholar 

  486. Hanson D, Ziegler S . Regulation of ionomycin-mediated granule release from rat basophil leukemia cells. Mol Immunol 2002; 38: 1329.

    CAS  PubMed  Google Scholar 

  487. Piwien-Pilipuk G, MacDougald O, Schwartz J . Dual regulation of phosphorylation and dephosphorylation of C/EBPbeta modulate its transcriptional activation and DNA binding in response to growth hormone. J Biol Chem 2002; 277: 44557–44565.

    CAS  PubMed  Google Scholar 

  488. Shum JK, Melendez JA, Jeffrey JJ . Serotonin-induced MMP-13 production is mediated via phospholipase C, protein kinase C and ERK1/2 in rat uterine smooth muscle cells. J Biol Chem 2002; 277: 42830–42840.

    CAS  PubMed  Google Scholar 

  489. Zhang B, Fenton RG . Proliferation of IL-6-independent multiple myeloma does not require the activity of extracellular signal-regulated kinases (ERK1/2). J Cell Physiol 2002; 193: 42–54.

    CAS  PubMed  Google Scholar 

  490. Ohkita M, Takaoka M, Shiota Y, Nojiri R, Matsumura Y . Nitric oxide inhibits endothelin-1 production through the suppression of nuclear factor kappa B. Clin Sci (Lond) 2002; 103: 68S–71S.

    CAS  Google Scholar 

  491. Mori N, Yamada Y, Ikeda S, Yamasaki Y, Tsukasaki K, Tanaka Y et al. Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood 2002; 100: 1828–1834.

    CAS  PubMed  Google Scholar 

  492. Hoontrakoon R, Chu HW, Gardai SJ, Wenzel SE, McDonald P, Fadok VA et al. Interleukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-kappaB activation. Am J Respir Cell Mol Biol 2002; 26: 404–412.

    CAS  PubMed  Google Scholar 

  493. Catz SD, Johnson JL . Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 2001; 20: 7342–7351.

    CAS  PubMed  Google Scholar 

  494. Richter G, Hayden-Ledbetter M, Irgang M, Ledbetter JA, Westermann J, Korner I et al. Tumor necrosis factor-alpha regulates the expression of inducible costimulator receptor ligand on CD34(+) progenitor cells during differentiation into antigen presenting cells. J Biol Chem 2001; 276: 45686–45693.

    CAS  PubMed  Google Scholar 

  495. Keller SA, Schattner EJ, Cesarman E . Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 2000; 96: 2537–2542.

    CAS  PubMed  Google Scholar 

  496. Remacle-Bonnet MM, Garrouste FL, Heller S, Andre F, Marvaldi JL, Pommier GJ . Insulin-like growth factor-I protects colon cancer cells from death factor-induced apoptosis by potentiating tumor necrosis factor alpha-induced mitogen-activated protein kinase and nuclear factor kappaB signaling pathways. Cancer Res 2000; 60: 2007–2017.

    CAS  PubMed  Google Scholar 

  497. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA . Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 2001; 7: 1291–1297.

    CAS  PubMed  Google Scholar 

  498. Richter G, Hayden-Ledbetter M, Irgang M, Ledbetter JA, Westermann J, Korner I et al. Tumor necrosis factor-alpha regulates the expression of inducible costimulator receptor ligand on CD34(+) progenitor cells during differentiation into antigen presenting cells. J Biol Chem 2001; 276: 45686–45693.

    CAS  PubMed  Google Scholar 

  499. Hu X, Janssen WE, Moscinski LC, Bryington M, Dangsupa A, Rezai-Zadeh N et al. An IkappaBalpha inhibitor causes leukemia cell death through a p38 MAP kinase-dependent, NF-kappaB-independent mechanism. Cancer Res 2001; 61: 6290–6296.

    CAS  PubMed  Google Scholar 

  500. Izban KF, Ergin M, Qin JZ, Martinez RL, Pooley RJ, Saeed S et al. Constitutive expression of NF-kappa B is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis. Hum Pathol 2000; 31: 1482–1490.

    CAS  PubMed  Google Scholar 

  501. Schmidt TJ, Brun R, Willuhn G, Khalid SA . Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones. Planta Med 2002; 68: 750–751.

    CAS  PubMed  Google Scholar 

  502. Tornhamre S, Schmidt TJ, Nasman-Glaser B, Ericsson I, Lindgren JA . Inhibitory effects of helenalin and related compounds on 5-lipoxygenase and leukotriene C(4) synthase in human blood cells. Biochem Pharmacol 2001; 62: 903–911.

    CAS  PubMed  Google Scholar 

  503. Dirsch VM, Stuppner H, Vollmar AM . Cytotoxic sesquiterpene lactones mediate their death-inducing effect in leukemia T cells by triggering apoptosis. Planta Med 2001; 67: 557–559.

    CAS  PubMed  Google Scholar 

  504. Heilmann J, Wasescha MR, Schmidt TJ . The influence of glutathione and cysteine levels on the cytotoxicity of helenanolide type sesquiterpene lactones against KB cells. Bioorg Med Chem 2001; 9: 2189–2194.

    CAS  PubMed  Google Scholar 

  505. Dirsch VM, Stuppner H, Vollmar AM . Helenalin triggers a CD95 death receptor-independent apoptosis that is not affected by overexpression of Bcl-x(L) or Bcl-2. Cancer Res 2001; 61: 5817–5823.

    CAS  PubMed  Google Scholar 

  506. Deplus R, Brenner C, Burgers WA, Putmans P, Kouzarides T, de Launoit Y et al. Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 2002; 30: 3831–3838.

    CAS  PubMed  PubMed Central  Google Scholar 

  507. Stein DJ, Montgomery SA, Kasper S, Tanghoj P . Predictors of response to pharmacotherapy with citalopram in obsessive-compulsive disorder. Int Clin Psychopharmacol 2001; 16: 357–361.

    CAS  PubMed  Google Scholar 

  508. Hanekom GS, Stubbings HM, Kidson SH . The active fraction of plasmatic plasminogen activator inhibitor type 1 as a possible indicator of increased risk for metastatic melanoma. Cancer Detect Prevention 2002; 26: 50–59.

    CAS  Google Scholar 

  509. Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN . Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 2002; 34: 509–518.

    CAS  PubMed  Google Scholar 

  510. Haddad JJ . Nuclear factor (NF)-kappa B blockade attenuates but does not abrogate LPS-mediated interleukin (IL)-1 beta biosynthesis in alveolar epithelial cells. Biochem Biophys Res Commun 2002; 293: 252–257.

    CAS  PubMed  Google Scholar 

  511. Uchi H, Arrighi JF, Aubry JP, Furue M, Hauser C . The sesquiterpene lactone parthenolide inhibits LPS- but not TNF-alpha-induced maturation of human monocyte-derived dendritic cells by inhibition of the p38 mitogen-activated protein kinase pathway. J Allergy Clin Immunol 2002; 110: 269–276.

    CAS  PubMed  Google Scholar 

  512. Wen J, You KR, Lee SY, Song CH, Kim DG . Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J Biol Chem 2002; 277: 38954–38964.

    CAS  PubMed  Google Scholar 

  513. Gu Z, Lee RY, Skaar TC, Bouker KB, Welch JN, Lu J et al. Association of interferon regulatory factor-1, nucleophosmin, nuclear factor-kappaB, and cyclic AMP response element binding with acquired resistance to Faslodex (ICI 182,780). Cancer Res 2002; 62: 3428–3387.

  514. Cory AH, Cory JG . Augmentation of apoptosis responses in p53-deficient L1210 cells by compounds directed at blocking NFkappaB activation. Anticancer Res 2001; 21: 3807–3811.

    CAS  PubMed  Google Scholar 

  515. Kang SN, Kim SH, Chung SW, Lee MH, Kim HJ, Kim TS . Enhancement of 1 alpha,25-dihydroxyvitamin D(3)-induced differentiation of human leukaemia HL-60 cells into monocytes by parthenolide via inhibition of NF-kappa B activity. Br J Pharmacol 2002; 135: 1235–1244.

    CAS  PubMed  PubMed Central  Google Scholar 

  516. Gelfanov VM, Burgess GS, Litz-Jackson S, King AJ, Marshall MS, Nakshatri H et al. Transformation of interleukin-3-dependent cells without participation of Stat5/bcl-xL: cooperation of akt with raf/erk leads to p65 nuclear factor kappaB-mediated antiapoptosis involving c-IAP2. Blood 2001; 98: 2508–2517.

    CAS  PubMed  Google Scholar 

  517. Melotti P, Nicolis E, Tamanini A, Rolfini R, Pavirani A, Cabrini G . Activation of NF-kB mediates ICAM-1 induction in respiratory cells exposed to an adenovirus-derived vector. Gene Ther 2001; 8: 1436–1442.

    CAS  PubMed  Google Scholar 

  518. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 2002; 99: 11700–11705.

    CAS  PubMed  PubMed Central  Google Scholar 

  519. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM . The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 2001; 61: 8492–8497.

    CAS  PubMed  Google Scholar 

  520. Marks PA, Richon VM, Breslow R, Rifkind RA . Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001; 13: 477–483.

    CAS  PubMed  Google Scholar 

  521. Adams J, Elliott PJ . New agents in cancer clinical trials. Oncogene 2000; 19: 6687–6692 (Review).

    CAS  PubMed  Google Scholar 

  522. Richon VM, Sandhoff TW, Rifkind RA, Marks PA . Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 2000; 97: 10014–10019.

    CAS  PubMed  PubMed Central  Google Scholar 

  523. Richon VM, O'Brien JP . Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin Cancer Res 2002; 8: 662–664.

    PubMed  Google Scholar 

  524. Kitazono M, Rao VK, Robey R, Aikou T, Bates S, Fojo T et al. Histone deacetylase inhibitor FR901228 enhances adenovirus infection of hematopoietic cells. Blood 2002; 99: 2248–2251.

    CAS  PubMed  Google Scholar 

  525. Kwon HJ, Kim MS, Kim MJ, Nakajima H, Kim KW . Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. Int J Cancer 2002; 97: 290–296.

    CAS  PubMed  Google Scholar 

  526. Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagosklonny MV et al. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer 2000; 83: 817–825.

    CAS  PubMed  PubMed Central  Google Scholar 

  527. Byrd JC, Shinn C, Ravi R, Willis CR, Waselenko JK, Flinn IW et al. Depsipeptide (FR901228): a novel therapeutic agent with selective, in vitro activity against human B-cell chronic lymphocytic leukemia cells. Blood 1999; 94: 1401–1408.

    CAS  PubMed  Google Scholar 

  528. Guardiola AR, Yao TP . Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 2002; 277: 3350–3356.

    CAS  PubMed  Google Scholar 

  529. Jung M, Brosch G, Kolle D, Scherf H, Gerhauser C, Loidl P . Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J Med Chem 1999; 42: 4669–4679.

    CAS  PubMed  Google Scholar 

  530. Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yasuda Y et al. Isolation and structural elucidation of new cyclotetrapeptides trapoxins, A and B, having detransformation activities as antitumor agents. J Antibiot 1990; 143: 1524–1532.

    Google Scholar 

  531. Friedman D, Hu Z, Kolb EA, Gorfajn B, Scotto KW . Ecteinascidin-743 inhibits activated but not constitutive transcription. Cancer Res 2002; 62: 3377–3381.

    CAS  PubMed  Google Scholar 

  532. Marks PA, Richon VM, Breslow R, Rifkind RA . Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001; 13: 477–483 (Review).

    CAS  PubMed  Google Scholar 

  533. Jin S, Gorfajn B, Faircloth G, Scotto KW . Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc Natl Acad Sci USA 2000; 97: 6775–6779.

    CAS  PubMed  PubMed Central  Google Scholar 

  534. Ruller S, Stahl C, Kohler G, Eickhoff B, Breder J, Schlaak M et al. Sensitization of tumor cells to ribotoxic stress-induced apoptotic cell death: a new therapeutic strategy. Clin Cancer Res 1999; 5: 2714–2725.

    CAS  PubMed  Google Scholar 

  535. Huang H, Reed CP, Zhang JS, Shridhar V, Wang L, Smith DI . Carboxypeptidase A3 (CPA3): a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cells. Cancer Res 1999; 59: 2981–2988.

    CAS  PubMed  Google Scholar 

  536. Fournel M, Trachy-Bourget MC, Yan PT, Kalita A, Bonfils C, Beaulieu C et al. Sulfonamide anilides, a novel class of histone deacetylase inhibitors, are antiproliferative against human tumors. Cancer Res 2002; 62: 4325–4330.

    CAS  PubMed  Google Scholar 

  537. Park SH, Lee SR, Kim BC, Cho EA, Patel SP, Kang HB et al. Transcriptional regulation of the transforming growth factor beta type II receptor gene by histone acetyltransferase and deacetylase is mediated by NF-Y in human breast cancer cells. J Biol Chem 2002; 277: 5168–5174.

    CAS  PubMed  Google Scholar 

  538. Yoshida M, Furumai R, Nishiyama M, Komatsu Y, Nishino N, Horinouchi S . Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother Pharmacol 2001; 48: S20–S26 (Review).

    CAS  PubMed  Google Scholar 

  539. Jung M . Inhibitors of histone deacetylase as new anticancer agents. Curr Med Chem 2001; 8: 1505–1511.

    CAS  PubMed  Google Scholar 

  540. Lee BI, Park SH, Kim JW, Sausville EA, Kim HT, Nakanishi O et al. MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells. Cancer Res 2001; 61: 931–934.

    CAS  PubMed  Google Scholar 

  541. Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y et al. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 1999; 42: 3001–3003.

    CAS  PubMed  Google Scholar 

  542. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999; 96: 4592–4597.

    CAS  PubMed  PubMed Central  Google Scholar 

  543. Dear AE, Medcalf RL . The novel anti-tumour agent oxamflatin differentially regulates urokinase and plasminogen activator inhibitor type 2 expression and inhibits urokinase-mediated proteolytic activity. Biochim Biophys Acta 2000; 1492: 15–22.

    CAS  PubMed  Google Scholar 

  544. Yoshida M, Beppu T . [Trichostatins and leptomycins, new cell cycle inhibitors specific for G1 and G2 phases]. Ann NY Acad Sci 1999; 886: 23–36 (Review).

    CAS  PubMed  Google Scholar 

  545. Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S . Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 1999; 18: 2461–2470.

    CAS  PubMed  Google Scholar 

  546. Sonoda H, Nishida K, Yoshioka T, Ohtani M, Sugita K . Oxamflatin: a novel compound which reverses malignant phenotype to normal one via induction of JunD. Oncogene 1996; 13: 143–149.

    CAS  PubMed  Google Scholar 

  547. Ellis CA, Glark G . The importance of being K-Ras. Cell Signal. 2000; 12: 425–434.

    CAS  PubMed  Google Scholar 

  548. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron. 2002; 34: 807–820.

    CAS  PubMed  Google Scholar 

  549. Pages G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 1999; 286: 1374–1377.

    CAS  PubMed  Google Scholar 

  550. Selcher JC, Nekrasova T, Paylor R, Landreth GE, Sweatt JD . Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learn Memory 2001; 8: 11–19.

    CAS  Google Scholar 

  551. Pirollo KF, Hao Z, Rait A, Ho CW, Chang EH . Evidence supporting a signal transduction pathway leading to the radiation-resistant phenotype in human tumor cells. Biochem Biophys Res Commun 1997; 230: 196–201.

    CAS  PubMed  Google Scholar 

  552. Simon C, Juarez J, Nicolson GL, Boyd D . Effect of PD 098059, a specific inhibitor of mitogen-activated protein kinase kinase, on urokinase expression and in vitro invasion. Cancer Res 1996; 56: 5369–5374.

    CAS  PubMed  Google Scholar 

  553. Loda M, Capodieci P, Mishra R, Yao H, Corless C, Grigioni W et al. Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. Am J Pathol 1996; 149: 1553–1564.

    CAS  PubMed  PubMed Central  Google Scholar 

  554. Magi-Galluzzi C, Mishra R, Fiorentino M, Montironi R, Yao H, Capodieci P et al. Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab Invest 1997; 76: 37–51.

    CAS  PubMed  Google Scholar 

  555. Scimeca JC, Servant MJ, Dyer JO, Meloche S . Essential role of calcium in the regulation of MAP kinase phosphatase-1 expression. Oncogene 1997; 15: 717–725.

    CAS  PubMed  Google Scholar 

  556. Bennett AM, Tonks NK . Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 1997; 278: 1288–1291.

    CAS  PubMed  Google Scholar 

  557. Feig LA, Cooper GM . Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol Cell Biol 1988; 8: 3235–3243.

    CAS  PubMed  PubMed Central  Google Scholar 

  558. Fiordalisi JJ, Holly SP, Johnson II RL, Parise LV, Cox AD . A distinct class of dominant negative Ras mutants: cytosolic GTP-bound Ras effector domain mutants that inhibit Ras signaling and transformation and enhance cell adhesion. J Biol Chem 2002; 277: 10813–10823.

    CAS  PubMed  Google Scholar 

  559. Wickstrom E . Oligonucleotide treatment of ras-induced tumors in nude mice. Mol Biotechnol 2001; 18:35–55.

    CAS  PubMed  Google Scholar 

  560. McPhillips F, Mullen P, Monia BP, Ritchie AA, Dorr FA, Smyth JF et al. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer 2001; 85:1753–1758.

    CAS  PubMed  PubMed Central  Google Scholar 

  561. Bosher JM, Labouesse M . RNA interference: genetic wand and genetic watchdog. Nat Cell Biol 2000; 2: E31–E36.

    CAS  PubMed  Google Scholar 

  562. Aoki Y, Cioca D, Oidaira H, Kamiya J, Kiyosawa K . RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol 2003; 30: 96–102.

    CAS  PubMed  Google Scholar 

  563. Cioca DP, Aoki Y, Kiyosawa K . RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther 2003; 10: 125–133.

    CAS  PubMed  Google Scholar 

  564. Bianchini M, Radrizzani M, Brocardo MG, Reyes GB, Gonzalez Solveyra C, Santa-Coloma TA . Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. J Immunol Methods 2001; 252: 191–197.

    CAS  PubMed  Google Scholar 

  565. Scita G, Tenca P, Frittoli E, Tocchetti A, Innocenti M, Giardina G et al. Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J 2000; 19: 2393–2398.

    CAS  PubMed  PubMed Central  Google Scholar 

  566. Qiu RG, Chen J, McCormick F, Symons M . A role for Rho in Ras transformation. Proc Natl Acad Sci USA 1995; 92: 11781–11785.

    CAS  PubMed  PubMed Central  Google Scholar 

  567. Matozaki T, Nakanishi H, Takai Y . Small G-protein networks: their crosstalk and signal cascades. Cell Signal 2000; 12: 515–524.

    CAS  PubMed  Google Scholar 

  568. Wennerberg K, Ellerbroek SM, Liu RY, Karnoub AE, Burridge K, Der CJ . RhoG signals in parallel with Rac1 and Cdc42. J Biol Chem 2002; 277: 47810–47817.

    CAS  PubMed  Google Scholar 

  569. De Corte V, Bruyneel E, Boucherie C, Mareel M, Vandekerckhove J, Gettemans J . Gelsolin-induced epithelial cell invasion is dependent on Ras–Rac signaling. EMBO J 2002; 21: 6781–6790.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by grants from the NIH (RO1CA51025) and NIH (R01CA98195) to JAM.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, F., Steelman, L., Lee, J. et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263–1293 (2003). https://doi.org/10.1038/sj.leu.2402945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402945

Keywords

This article is cited by

Search

Quick links