Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

FLT3 mutations in acute myeloid leukemia cell lines

Abstract

Internal tandem duplications (ITD) and D835 point mutations of the receptor tyrosine kinase (RTK) FLT3 are found in a high proportion of cases with acute myeloid leukemia (AML). These genetic aberrations may lead to the constitutive activation of the receptor, thus providing the molecular basis for a persisting growth stimulus. We have screened 69 AML-derived cell lines for FLT3 mutations. Four of these cell lines showed ITD of the FLT3 gene, none carried a D835 point mutation. Two cell lines (MUTZ-11 and MV4-11) expressed exclusively the mutated allele, the other two cell lines (MOLM-13 and PL-21) displayed a mutated and the wild-type version of the gene. Although mutationally activated FLT3 is supposed to substitute for the stimulatory signal of a growth factor, one of these cell lines (MUTZ-11) was strictly cytokine-dependent. FLT3 transcripts were found in all four cell lines, but the constitutively phosphorylated receptor protein was clearly detectable only in cell line MV4-11, possibly explaining why MUTZ-11 cells were growth-factor dependent. Thus, not all FLT3 ITD-positive cells express high levels of the active receptor protein, a finding that might be of relevance for a possible future application of a kinase inhibitor as therapeutic agent. It had been described that STAT-5 phosphorylation was part of the FLT3 signalling chain and that STAT-5 molecules were constitutively phosphorylated in FLT3 ITD-positive cells. Although we observed the constitutive phosphorylation of STAT-5 molecules in FLT3-mutant cells, FLT3 ligand (FL) did not induce STAT-5 phosphorylation in FLT3 wild-type cells. These results suggest that the signalling mechanisms of the mutated FL receptor differ at least to some extent from those conferred by wild-type FLT3. In conclusion, (1) not all cells with FLT3 ITD express significant amounts of the mutated receptor protein; (2) signals downstream from wild-type and mutant FLT3 receptors are not 100% idential; and (3) MV4-11 represents a model cell line for FLT3 ITD signalling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Birg, F, Courcoul, M, Rosnet, O, Bardin, F, Pebusque, MJ, Marchetto, S, Tabilio, A, Mannoni, P & Birnbaum, D. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood, (1992). 80, 2584–2593.

    CAS  PubMed  Google Scholar 

  2. Carow, CE, Levenstein, M, Kaufmann, SH, Chen, J, Amin, S, Rockwell, P, Witte, L, Borowitz, MJ, Civin, CI & Small, D. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/FLK2) in human leukemias. Blood, (1996). 87, 1089–1096.

    CAS  PubMed  Google Scholar 

  3. Rosnet, O, Bühring, HJ, Marchetto, S, Rappold, I, Lavagna, C, Sainty, D, Arnoulet, C, Chabannon, C, Kanz, L, Hannum, C & Birnbaum, D Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia, (1996). 10, 238–248.

    CAS  Google Scholar 

  4. Meierhoff, G, Dehmel, U, Gruss, HJ, Rosnet, O, Birnbaum, D, Quentmeier, H, Dirks, W & Drexler, HG Expression of FLT3 receptor and FLT3-ligand in human leukemia–lymphoma cell lines. Leukemia, (1995). 9, 1368–1372.

    CAS  Google Scholar 

  5. Dehmel, U, Zaborski, M, Meierhoff, G, Rosnet, O, Birnbaum, D, Ludwig, WD, Quentmeier, H & Drexler, HG Effects of FLT3 ligand on human leukemia cells. I. Proliferative response of myeloid leukemia cells. Leukemia, (1996). 10, 261–270.

    CAS  PubMed  Google Scholar 

  6. Stacchini, A, Fubini, L, Severino, A, Sanavio, F, Aglietta, M & Piacibello, W Expression of type III receptor tyrosine kinases FLT3 and KIT and responses to their ligands by acute myeloid leukemia blasts. Leukemia, (1996). 10, 1584–1591.

    CAS  Google Scholar 

  7. Nakao, M, Yokota, S, Iwai, T, Kaneko, H, Horiike, S, Kashima, K, Sonoda, Y, Fujimoto, T & Misawa, S Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia, (1996). 10, 1911–1918.

    CAS  Google Scholar 

  8. Yokota, S, Kiyoi, H, Nakao, M, Iwai, T, Misawa, S, Okuda, T, Sonoda, Y, Abe, T, Kahsima, K, Matsuo, Y & Naoe, T Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia, (1997). 11, 1605–1609.

    Article  CAS  Google Scholar 

  9. Kiyoi, H, Naoe, T, Nakano, Y, Yokota, S, Minami, S, Miyawaki, S, Asou, N, Kuriyama, K, Jinnai, I, Shimazaki, C, Akiyama, H, Saito, K, Oh, H, Motoji, T, Omoto, E, Saito, H, Ohno, R & Ueda, R Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood, (1999). 93, 3074–3080.

    CAS  Google Scholar 

  10. Kiyoi, H, Naoe, T, Yokota, S, Nakao, M, Minami, S, Kuriyama, K, Takeshita, A, Saito, K, Hasegawa, S, Shimodaira, S, Tamura, J, Shimazaki, C, Matsue, K, Kobayashi, H, Arima, N, Suziki, R, Morishita, H, Saito, H, Ueda, R & Ohno, R, the Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho) Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia, (1997). 11, 1447–1452.

    Article  CAS  Google Scholar 

  11. Meshinchi, S, Woods, WG, Stirewalt, DL, Sweetser, DA, Buckley, JD, Tjoa, TK, Bernstein, ID & Radich, JP Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood, (2001). 97, 89–94.

    Article  CAS  Google Scholar 

  12. Rombouts, WJC, Blokland, I, Löwenberg, B & Ploemacher, RE Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia, (2000). 14, 675–683.

    Article  CAS  Google Scholar 

  13. Kiyoi, H, Towatari, M, Yokota, S, Hamaguchi, M, Ohno, R, Saito, H & Naoe, T Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia, (1998). 12, 1333–1337.

    Article  CAS  Google Scholar 

  14. Hayakawa, F, Towatari, M, Kiyoi, H, Tanimoto, M, Kitamura, T, Saito, H & Naoe, T Tandem-duplicated FLT3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene, (2000). 19, 624–631.

    Article  CAS  Google Scholar 

  15. Mizuki, M, Fenski, R, Halfter, H, Matsumura, I, Schmidt, R, Müller, C, Grüning, W, Kratz-Albers, K, Serve, S, Steur, C, Büchner, T, Kienast, J, Kanakura, Y, Berdel, WE & Serve, H Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood, (2000). 96, 3907–3914.

    CAS  PubMed  Google Scholar 

  16. Tse, KF, Novelli, E, Civin, CI, Bohmer, FD & Small, D Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia, (2001). 15, 1001–1010.

    Article  CAS  Google Scholar 

  17. Levis, M, Tse, KF, Smith, BD, Garrett, E & Small, D A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood, (2001). 98, 885–887.

    Article  CAS  Google Scholar 

  18. Yamamoto, Y, Kiyoi, H, Nakano, Y, Suzuki, R, Kodera, Y, Miyawaki, S, Asou, N, Kuriyama, K, Yagasaki, F, Shimazaki, C, Akiyama, H, Saito, K, Nishimura, M, Motoji, T, Shinagawa, K, Takeshita, A, Saito, H, Ueda, R, Ohno, R & Naoe, T Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood, (2001). 97, 2434–2439.

    Article  CAS  Google Scholar 

  19. Abu-Duhier, FM, Goodeve, AC, Wilson, GA, Care, RS, Peake, IR & Reilly, JT Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol, (2001). 113, 983–988.

    Article  CAS  Google Scholar 

  20. Serve, H, Flesch, K, Serve, S, Fenski, R & Berdel, WE Expression and function of Flt3/flk2 in human tumor cell lines. Int J Oncol, (1999). 14, 765–770.

    CAS  PubMed  Google Scholar 

  21. Drexler, HG, Dirks, W, MacLeod, RAF, Quentmeier, H, Steube, KG & Uphoff, CC DSMZ Catalogue of Human and Animal Cell Lines, 8th edn, DSMZ: Braunschweig, Germany (2001).

    Google Scholar 

  22. Drexler, HG The Leukemia–Lymphoma Cell Line Factsbook, Academic Press: San Diego, CA (2000).

    Google Scholar 

  23. Abu-Duhier, FM, Goodeve, AC, Wilson, GA, Care, RS, Peake, IR & Reilly, JT Genomic structure of human FLT3: implications for mutational analysis. Br J Haematol, (2001). 113, 1076–1089.

    Article  CAS  Google Scholar 

  24. Dirks, W, MacLeod, RAF, Jäger, K, Milch, H & Drexler, HG First searchable database for DNA profiles of human cell lines: sequential use of fingerprint techniques for authentication. Cell Mol Biol, (1999). 45, 841–853.

    CAS  PubMed  Google Scholar 

  25. Zhang, S, Fukuda, S, Lee, Y, Hangoc, G, Cooper, S, Spolski, R, Leonard, WJ & Broxmeyer, HE Essential role of signal transducer and activator of transcripion (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med, (2000). 192, 719–728.

    Article  CAS  Google Scholar 

  26. Birkenkamp, KU, Geugien, M, Lemmink, HH, Kruijer, W & Vellenga, E Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia, (2001). 15, 1923–1931.

    Article  CAS  Google Scholar 

  27. Tse, KF, Mukherjee, G & Small, D Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia, (2000). 14, 1766–1776.

    Article  CAS  Google Scholar 

  28. Srinivasa, SP & Doshi, PD Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line. Leukemia, (2002). 16, 244–253.

    Article  CAS  Google Scholar 

  29. Beslu, N, LaRose, J, Casteran, N, Birnbaum, D, Lecocq, E, Dubreuil, P & Rottapel, R Phosphatidylinositol-3′ kinase is not required for mitogenesis or internalization of the Flt3/Flk2 receptor tyrosine kinase. J Biol Chem, (1996). 271, 20075–20081.

    Article  CAS  Google Scholar 

  30. Reilly, JT Class III receptor tyrosine kinases: role in leukaemogenesis. Br J Haematol, (2002). 116, 744–757.

    Article  CAS  Google Scholar 

  31. Fenski, R, Flesch, K, Serve, S, Mizuki, M, Oelmann, E, Kratz-Albers, K, Kienast, J, Leo, R, Schwartz, S, Berdel, WE & Serve, H Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol, (2000). 108, 322–330.

    Article  CAS  Google Scholar 

  32. Whitman, SP, Archer, KJ, Feng, L, Baldus, C, Becknell, B, Carlson, BD, Carroll, AJ, Mrozek, K, Vardiman, JW, George, SL, Kolitz, JE, Larson, RA, Bloomfield, CD & Caligiuri, MA Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res, (2001). 61, 7233–7239.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs Ina Kramer (DSMZ) for sequencing FLT3 ITD.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quentmeier, H., Reinhardt, J., Zaborski, M. et al. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 17, 120–124 (2003). https://doi.org/10.1038/sj.leu.2402740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402740

Keywords

This article is cited by

Search

Quick links