Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines

Abstract

Until now, studies utilizing mRNA electroporation as a tool for the delivery of tumor antigens to human monocyte-derived dendritic cells (DC) have focused on DC electroporated in an immature state. Immature DC are considered to be specialized in antigen capture and processing, whereas mature DC present antigen and have an increased T-cell stimulatory capacity. Therefore, the consensus has been to electroporate DC before maturation. We show that the transfection efficiency of DC electroporated either before or after maturation was similarly high. Both immature and mature electroporated DC, matured in the presence of an inflammatory cytokine cocktail, expressed mature DC surface markers and preserved their capacity to secrete cytokines and chemokines upon CD40 ligation. In addition, both immature and mature DC can be efficiently cryopreserved before or after electroporation without deleterious effects on viability, phenotype or T-cell stimulatory capacity including in vitro antigen-specific T-cell activation. However, DC electroporated after maturation are more efficient in in vitro migration assays and at least as effective in antigen presentation as DC electroporated before maturation. These results are important for vaccination strategies where an optimal antigen presentation by DC after migration to the lymphoid organs is crucial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pardoll DM, Topalian SL . The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 1998; 10: 588–594.

    Article  CAS  PubMed  Google Scholar 

  2. Hung K et al. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998; 188: 2357–2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinman RM . The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–296.

    Article  CAS  PubMed  Google Scholar 

  4. Cella M, Sallusto F, Lanzavecchia A . Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 1997; 9: 10–16.

    Article  CAS  PubMed  Google Scholar 

  5. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  6. Bell D, Young JW, Banchereau J . Dendritic cells. Adv Immunol 1999; 72: 255–324.

    CAS  PubMed  Google Scholar 

  7. Banchereau J et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  8. Guermonprez P et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002; 20: 621–667.

    Article  CAS  PubMed  Google Scholar 

  9. Fong L, Engleman EG . Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18: 245–273.

    Article  CAS  PubMed  Google Scholar 

  10. Steinman RM, Dhodapkar M . Active immunization against cancer with dendritic cells: the near future. Int J Cancer 2001; 94: 459–473.

    Article  CAS  PubMed  Google Scholar 

  11. Brossart P, Wirths S, Brugger W, Kanz L . Dendritic cells in cancer vaccines. Exp Hematol 2001; 29: 1247–1255.

    Article  CAS  PubMed  Google Scholar 

  12. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G . Dendritic cells as vectors for therapy. Cell 2001; 106: 271–274.

    Article  CAS  PubMed  Google Scholar 

  13. Gilboa E . The makings of a tumor rejection antigen. Immunity 1999; 11: 263–270.

    Article  CAS  PubMed  Google Scholar 

  14. Tuyaerts S et al. Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods 2002; 264: 135–151.

    Article  CAS  PubMed  Google Scholar 

  15. Romani N et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180: 83–93.

    Article  CAS  PubMed  Google Scholar 

  16. Jonuleit H et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997; 27: 3135–3142.

    Article  CAS  PubMed  Google Scholar 

  17. Kirk CJ, Mule JJ . Gene-modified dendritic cells for use in tumor vaccines. Hum Gene Ther 2000; 11: 797–806.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Y, Bosch ML, Salgaller ML . Current methods for loading dendritic cells with tumor antigen for the induction of antitumor immunity. J Immunother 2002; 25: 289–303.

    Article  CAS  PubMed  Google Scholar 

  19. Mitchell DA, Nair SK . RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest 2000; 106: 1065–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ponsaerts P, Van Tendeloo VF, Berneman ZN . Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol 2003; 134: 378–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thurner B et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190: 1669–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santin AD et al. Induction of human papillomavirus-specific CD4(+) and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cervical cancer. J Virol 1999; 73: 5402–5410.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen CH, Wu TC . Experimental vaccine strategies for cancer immunotherapy. J Biomed Sci 1998; 5: 231–252.

    Article  CAS  PubMed  Google Scholar 

  24. Tobery TW, Siliciano RF . Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J Exp Med 1997; 185: 909–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tobery T, Siliciano RF . Cutting edge: induction of enhanced CTL-dependent protective immunity in vivo by N-end rule targeting of a model tumor antigen. J Immunol 1999; 162: 639–642.

    CAS  PubMed  Google Scholar 

  26. Varshavsky A . Recent studies of the ubiquitin system and the N-end rule pathway. Harvey Lect 2000; 96: 93–116.

    PubMed  Google Scholar 

  27. Bonini C, Lee SP, Riddell SR, Greenberg PD . Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells. J Immunol 2001; 166: 5250–5257.

    Article  CAS  PubMed  Google Scholar 

  28. Lin KY et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56: 21–26.

    CAS  PubMed  Google Scholar 

  29. Thomson SA et al. Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design. J Virol 1998; 72: 2246–2252.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Su Z et al. Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res 2002; 62: 5041–5048.

    CAS  PubMed  Google Scholar 

  31. Gilboa E, Nair SK, Lyerly HK . Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 1998; 46: 82–87.

    Article  CAS  PubMed  Google Scholar 

  32. Nair SK et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 1998; 16: 364–369.

    Article  CAS  PubMed  Google Scholar 

  33. Heiser A et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol 2000; 164: 5508–5514.

    Article  CAS  PubMed  Google Scholar 

  34. Heiser A et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002; 109: 409–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heiser A et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res 2001; 61: 3388–3393.

    CAS  PubMed  Google Scholar 

  36. Thornburg C, Boczkowski D, Gilboa E, Nair SK . Induction of cytotoxic T lymphocytes with dendritic cells transfected with human papillomavirus E6 and E7 RNA: implications for cervical cancer immunotherapy. J Immunother 2000; 23: 412–418.

    Article  CAS  PubMed  Google Scholar 

  37. Van Tendeloo VF et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001; 98: 49–56.

    Article  CAS  PubMed  Google Scholar 

  38. Saeboe-Larssen S, Fossberg E, Gaudernack G . mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods 2002; 259: 191–203.

    Article  CAS  PubMed  Google Scholar 

  39. Kalady MF et al. Enhanced dendritic cell antigen presentation in RNA-based immunotherapy. J Surg Res 2002; 105: 17–24.

    Article  CAS  PubMed  Google Scholar 

  40. Tuyaerts S et al. Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells. Cancer Gene Ther 2003; 10: 696–706.

    Article  CAS  PubMed  Google Scholar 

  41. Bonehill A et al. Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res 2003; 63: 5587–5594.

    CAS  PubMed  Google Scholar 

  42. Milazzo C et al. Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA. Blood 2003; 101: 977–982.

    Article  CAS  PubMed  Google Scholar 

  43. Larsson M et al. Requirement of mature dendritic cells for efficient activation of influenza A-specific memory CD8+ T cells. J Immunol 2000; 165: 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  44. Lewalle P, Rouas R, Lehmann F, Martiat P . Freezing of dendritic cells, generated from cryopreserved leukaphereses, does not influence their ability to induce antigen-specific immune responses or functionally react to maturation stimuli. J Immunol Methods 2000; 240: 69–78.

    Article  CAS  PubMed  Google Scholar 

  45. Feuerstein B et al. A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods 2000; 245: 15–29.

    Article  CAS  PubMed  Google Scholar 

  46. Romani N et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 1996; 196: 137–151.

    Article  CAS  PubMed  Google Scholar 

  47. Lee AW et al. A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 2002; 20 (Suppl 4): A8–A22.

    Article  CAS  PubMed  Google Scholar 

  48. Scandella E et al. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 2002; 100: 1354–1361.

    Article  CAS  PubMed  Google Scholar 

  49. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F . Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 2000; 1: 311–316.

    Article  CAS  PubMed  Google Scholar 

  50. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393: 474–478.

    Article  CAS  PubMed  Google Scholar 

  51. Bennett SR et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393: 478–480.

    Article  CAS  PubMed  Google Scholar 

  52. Bonehill A et al. Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 2004; 172: 6649–6657.

    Article  CAS  PubMed  Google Scholar 

  53. Cella M et al. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997; 388: 782–787.

    Article  CAS  PubMed  Google Scholar 

  54. Cella M et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 1999; 189: 821–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liao X et al. Transfection of RNA encoding tumor antigens following maturation of dendritic cells leads to prolonged presentation of antigen and the generation of high-affinity tumor-reactive cytotoxic T lymphocytes. Mol Ther 2004; 9: 757–764.

    Article  CAS  PubMed  Google Scholar 

  56. Van Meirvenne S et al. In vivo depletion of CD4+CD25+ regulatory T cells enhances the antigen-specific primary and memory CTL response elicited by mature mRNA electroporated dendritic cells. Mol Ther 2005 (in press).

Download references

Acknowledgements

Material from patient R12 (from which clone R12-C9 was derived) was kindly provided by Dr B Schuler-Thurner and Dr ES Schultz (University Hospital of Erlangen, Erlangen, Germany). We thank C Huysmans, E Borms and J Volkaert for the help with DC cultures, E Vaeremans and M Verbuyst for mRNA preparations, J Aerts for his useful discussions and critical review of the manuscript, R Andries and J Theunissen for their helpful technical suggestions and C Wildmann for providing the T-cell clones. This work was supported by grants to K Thielemans from the Onderzoeksraad (OZR) of the Vrije Universiteit Brussel (VUB), the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the Flemish Institute for Science & Technology (IWT), the Ministry of Science (IUAP/PAI V), the FORTIS Bank, the Belgische Federatie voor Kankerbestrijding, the Brussels Region and BruCells.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michiels, A., Tuyaerts, S., Bonehill, A. et al. Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Ther 12, 772–782 (2005). https://doi.org/10.1038/sj.gt.3302471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302471

Keywords

This article is cited by

Search

Quick links