Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene Therapy Progress and Prospects: Electroporation and other physical methods

Abstract

Over the last 5 years, physical methods of plasmid delivery have revolutionized the efficiency of nonviral gene transfer, in some cases reaching the efficiencies of viral vectors. In vivo electroporation dramatically increases transfection efficiency for a variety of tissues. Other methods with clinical precedent, pressure-perfusion and ultrasound, also improve plasmid gene transfer. Alternatives such as focused laser, magnetic fields and ballistic (gene gun) approaches can also enhance delivery. As plasmid DNA appears to be a safe gene vector system, it seems likely that plasmid with physically enhanced delivery will be used increasingly in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Comerota AJ et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 2002; 35: 930–936.

    Article  PubMed  Google Scholar 

  2. Losordo DW et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002; 105: 2012–2018.

    Article  CAS  PubMed  Google Scholar 

  3. Gothelf A, Mir LM, Gehl J . Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 2003; 29: 371–387.

    Article  CAS  PubMed  Google Scholar 

  4. Bigey P, Bureau MF, Scherman D . In vivo plasmid DNA electrotransfer. Curr Opin Biotechnol 2002; 13: 443–447.

    Article  CAS  PubMed  Google Scholar 

  5. Gehl J . Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 2003; 177: 437–447.

    Article  CAS  PubMed  Google Scholar 

  6. McMahon JM, Wells DJ . Electroporation for gene transfer to skeletal muscles: current status. BioDrugs 2004; 18: 155–165.

    Article  CAS  PubMed  Google Scholar 

  7. Bloquel C, Fabre E, Bureau MF, Scherman D . Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 2004; 6 (Suppl 1): S11–S23.

    Article  CAS  PubMed  Google Scholar 

  8. Golzio M, Teissie J, Rols MP . Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 2002; 99: 1292–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Budker V et al. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med 2000; 2: 76–88.

    Article  CAS  PubMed  Google Scholar 

  10. Bureau MF et al. Intramuscular plasmid DNA electrotransfer: biodistribution and degradation. Biochim Biophys Acta 2004; 1676: 138–148.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Nolan E, Kreitschitz S, Rabussay DP . Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim Biophys Acta 2002; 1572: 1–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bureau MF et al. Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 2000; 1474: 353–359.

    Article  CAS  PubMed  Google Scholar 

  13. McMahon JM et al. Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase – increased expression with reduced muscle damage. Gene Therapy 2001; 8: 1264–1270.

    Article  CAS  PubMed  Google Scholar 

  14. Durieux AC, Bonnefoy R, Busso T, Freyssenet D . In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage. J Gene Med 2004; 6: 809–816.

    Article  CAS  PubMed  Google Scholar 

  15. Dean DA et al. Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Therapy 2003; 10: 1608–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohashi S et al. Successful genetic transduction in vivo into synovium by means of electroporation. Biochem Biophys Res Commun 2002; 293: 1530–1535.

    Article  CAS  PubMed  Google Scholar 

  17. Lin CR et al. Electroporation for direct spinal gene transfer in rats. Neurosci Lett 2002; 317: 1–4.

    Article  CAS  PubMed  Google Scholar 

  18. Dezawa M et al. Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron 2002; 33: 1–6.

    Article  CAS  PubMed  Google Scholar 

  19. Matsuda T, Cepko CL . Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 2004; 101: 16–22.

    Article  CAS  PubMed  Google Scholar 

  20. Wells KE et al. Enhanced in vivo delivery of antisense oligonucleotides to restore dystrophin expression in adult mdx mouse muscle. FEBS Lett 2003; 552: 145–149.

    Article  CAS  PubMed  Google Scholar 

  21. Heller LC, Coppola D . Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Therapy 2002; 9: 1321–1325.

    Article  CAS  PubMed  Google Scholar 

  22. Tamura T et al. Combination of IL-12 and IL-18 of electro-gene therapy synergistically inhibits tumor growth. Anticancer Res 2003; 23: 1173–1179.

    CAS  PubMed  Google Scholar 

  23. Kishida T et al. Electrochemo-gene therapy of cancer: intratumoral delivery of interleukin-12 gene and bleomycin synergistically induced therapeutic immunity and suppressed subcutaneous and metastatic melanomas in mice. Mol Ther 2003; 8: 738–745.

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Huang L . Electric gene transfer to the liver following systemic administration of plasmid DNA. Gene Therapy 2002; 9: 1116–1119.

    Article  CAS  PubMed  Google Scholar 

  25. Tollefsen S et al. Improved cellular and humoral immune responses against Mycobacterium tuberculosis antigens after intramuscular DNA immunisation combined with muscle electroporation. Vaccine 2002; 20: 3370–3378.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L et al. Accelerated immune response to DNA vaccines. DNA Cell Biol 2003; 22: 815–822.

    Article  CAS  PubMed  Google Scholar 

  27. Scheerlinck JP et al. In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine 2004; 22: 1820–1825.

    Article  CAS  PubMed  Google Scholar 

  28. Tjelle TE et al. Monoclonal antibodies produced by muscle after plasmid injection and electroporation. Mol Ther 2004; 9: 328–336.

    Article  CAS  PubMed  Google Scholar 

  29. Fukuchi-Shimogori T, Grove EA . Neocortex patterning by the secreted signaling molecule FGF8. Science 2001; 294: 1071–1074.

    Article  CAS  PubMed  Google Scholar 

  30. Saito T, Nakatsuji N . Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 2001; 240: 237–246.

    Article  CAS  PubMed  Google Scholar 

  31. Tabata H, Nakajima K . Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 2001; 103: 865–872.

    Article  CAS  PubMed  Google Scholar 

  32. Wei F et al. Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J Neurosci 2003; 23: 8402–8409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Z et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Therapy 2004; 11: 711–721.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang G et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Therapy 2004; 11: 675–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andrianaivo F et al. Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med 2004, online in advance of print.

  36. Kobayashi N et al. Hepatic delivery of particulates in the submicron range by a hydrodynamics-based procedure: implications for particulate gene delivery systems. J Gene Med 2004; 6: 455–463.

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi N, Nishikawa M, Hirata K, Takakura Y . Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med 2004; 6: 584–592.

    Article  CAS  PubMed  Google Scholar 

  38. Ehrhardt A et al. Optimization of cis-acting elements for gene expression from nonviral vectors in vivo. Hum Gene Ther 2003; 14: 215–225.

    Article  CAS  PubMed  Google Scholar 

  39. Alino SF, Crespo A, Dasi F . Long-term therapeutic levels of human alpha-1 antitrypsin in plasma after hydrodynamic injection of nonviral DNA. Gene Therapy 2003; 10: 1672–1679.

    Article  CAS  PubMed  Google Scholar 

  40. Lewis DL et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 2002; 32: 107–108.

    Article  CAS  PubMed  Google Scholar 

  41. McCaffrey AP et al. RNA interference in adult mice. Nature 2002; 418: 38–39.

    Article  CAS  PubMed  Google Scholar 

  42. Maruyama H et al. High-level expression of naked DNA delivered to rat liver via tail vein injection. J Gene Med 2002; 4: 333–341.

    Article  CAS  PubMed  Google Scholar 

  43. Eastman SJ et al. Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum Gene Ther 2002; 13: 2065–2077.

    Article  CAS  PubMed  Google Scholar 

  44. Maruyama H et al. Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther 2002; 13: 455–468.

    Article  CAS  PubMed  Google Scholar 

  45. Liu F, Lei J, Vollmer R, Huang L . Mechanism of liver gene transfer by mechanical massage. Mol Ther 2004; 9: 452–457.

    Article  CAS  PubMed  Google Scholar 

  46. Liu F, Nishikawa M, Clemens PR, Huang L . Transfer of full-length Dmd to the diaphragm muscle of Dmd(mdx/mdx) mice through systemic administration of plasmid DNA. Mol Ther 2001; 4: 45–51.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang G et al. Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 2001; 12: 427–438.

    Article  CAS  PubMed  Google Scholar 

  48. Eggermont AM, de Wilt JH, ten Hagen TL . Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol 2003; 4: 429–437.

    Article  PubMed  Google Scholar 

  49. Herweijer H, Wolff JA . Progress and prospects: naked DNA gene transfer and therapy. Gene Therapy 2003; 10: 453–458.

    Article  CAS  PubMed  Google Scholar 

  50. Braun S . Duchenne muscular dystrophy gene therapy. Abstract Inv 26, ESGT 11th Annual Congress, November 14–17, 2003.

  51. Liang KW et al. Restoration of dystrophin expression in mdx mice by intravascular injection of naked DNA containing full-length dystrophin cDNA. Gene Ther 2004; 11: 901–908.

    Article  CAS  PubMed  Google Scholar 

  52. Taniyama Y et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Therapy 2002; 9: 372–380.

    Article  CAS  PubMed  Google Scholar 

  53. Taniyama Y et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002; 105: 1233–1239.

    Article  CAS  PubMed  Google Scholar 

  54. Schratzberger P et al. Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle. Mol Ther 2002; 6: 576–583.

    Article  CAS  PubMed  Google Scholar 

  55. Danialou G et al. Ultrasound increases plasmid-mediated gene transfer to dystrophic muscles without collateral damage. Mol Ther 2002; 6: 687–693.

    Article  CAS  PubMed  Google Scholar 

  56. Lu QL, Liang HD, Partridge T, Blomley MJ . Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Therapy 2003; 10: 396–405.

    Article  CAS  PubMed  Google Scholar 

  57. Chen S et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2003; 42: 301–308.

    Article  CAS  PubMed  Google Scholar 

  58. Bekeredjian R et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003; 108: 1022–1026.

    Article  PubMed  Google Scholar 

  59. Huber PE et al. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Therapy 2003; 10: 1600–1607.

    Article  CAS  PubMed  Google Scholar 

  60. Miller DL, Song J . Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol 2003; 29: 887–893.

    Article  PubMed  Google Scholar 

  61. Li T, Tachibana K, Kuroki M . Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice – initial results. Radiology 2003; 229: 423–428.

    Article  PubMed  Google Scholar 

  62. Pislaru SV et al. Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 2003; 24: 1690–1698.

    Article  CAS  PubMed  Google Scholar 

  63. Yamashita Y et al. In vivo gene transfer into muscle via electro-sonoporation. Hum Gene Ther 2002; 13: 2079–2084.

    Article  CAS  PubMed  Google Scholar 

  64. Zeira E et al. Femtosecond infrared laser – an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 2003; 8: 342–350.

    Article  CAS  PubMed  Google Scholar 

  65. Durieux AC, Bonnefoy R, Manissolle C, Freyssenet D . High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator. Biochem Biophys Res Commun 2002; 296: 443–450.

    Article  CAS  PubMed  Google Scholar 

  66. Scherer F et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy 2002; 9: 102–109.

    Article  CAS  PubMed  Google Scholar 

  67. Chuang YC et al. Gene therapy for bladder pain with gene gun particle encoding pro-opiomelanocortin cDNA. J Urol 2003; 170: 2044–2048.

    Article  CAS  PubMed  Google Scholar 

  68. Kitagawa T et al. Advantages and limitations of particle-mediated transfection (gene gun) in cancer immuno-gene therapy using IL-10, IL-12 or B7-1 in murine tumor models. J Gene Med 2003; 5: 958–965.

    Article  CAS  PubMed  Google Scholar 

  69. Matsuno Y et al. Nonviral gene gun mediated transfer into the beating heart. ASAIO J 2003; 49: 641–644.

    Article  CAS  PubMed  Google Scholar 

  70. Yoshizawa J et al. Successful in utero gene transfer using a gene gun in midgestational mouse fetuses. J Pediatr Surg 2004; 39: 81–84.

    Article  PubMed  Google Scholar 

  71. Martiniuk F et al. Helios gene gun particle delivery for therapy of acid maltase deficiency. DNA Cell Biol 2002; 21: 717–725.

    Article  CAS  PubMed  Google Scholar 

  72. Dileo J, Miller Jr TE, Chesnoy S, Huang L . Gene transfer to subdermal tissues via a new gene gun design. Hum Gene Ther 2003; 14: 79–87.

    Article  CAS  PubMed  Google Scholar 

  73. Trimble C et al. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 2003; 21: 4036–4042.

    Article  CAS  PubMed  Google Scholar 

  74. Barfoed AM et al. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination. Vaccine 2004; 22: 1395–1405.

    Article  CAS  PubMed  Google Scholar 

  75. Lima KM et al. Efficacy of DNA-hsp65 vaccination for tuberculosis varies with method of DNA introduction in vivo. Vaccine 2003; 22: 49–56.

    Article  CAS  PubMed  Google Scholar 

  76. Sasaki S et al. Adjuvant formulations and delivery systems for DNA vaccines. Methods 2003; 31: 243–254.

    Article  CAS  PubMed  Google Scholar 

  77. Zhu W, Thomas CE, Sparling PF . DNA immunization of mice with a plasmid encoding Neisseria gonorrhoeae PorB protein by intramuscular injection and epidermal particle bombardment. Vaccine 2004; 22: 660–669.

    Article  PubMed  Google Scholar 

  78. Liu MA . DNA vaccines: a review. J Intern Med 2003; 253: 402–410.

    Article  CAS  PubMed  Google Scholar 

  79. Paster W et al. In vivo plasmid DNA electroporation generates exceptionally high levels of epitope-specific CD8+ T-cell responses. Gene Therapy 2003; 10: 717–724.

    Article  CAS  PubMed  Google Scholar 

  80. Babiuk S et al. Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 2002; 20: 3399–3408.

    Article  CAS  PubMed  Google Scholar 

  81. Arruda VR et al. Sustained correction of hemophilia B phenotype following intravascular delivery of AAV vector to skeletal muscle. Mol Ther 2002; 5: S157.

    Google Scholar 

  82. Emani SM et al. Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther 2003; 8: 306–313.

    Article  CAS  PubMed  Google Scholar 

  83. Ding Z et al. A minimally invasive approach for efficient gene delivery to rodent hearts. Gene Therapy 2004; 11: 260–265.

    Article  CAS  PubMed  Google Scholar 

  84. Chen S et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2003; 42: 301–308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, D. Gene Therapy Progress and Prospects: Electroporation and other physical methods. Gene Ther 11, 1363–1369 (2004). https://doi.org/10.1038/sj.gt.3302337

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302337

Keywords

This article is cited by

Search

Quick links