Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Effective repeat administration with adenovirus vectors to the muscle

Abstract

Effective repeat administration of adenovirus vectors following intranasal or intravenous delivery is hindered by a strong neutralizing antibody response to the vector. Intramuscular administration of adenovirus vectors elicited a neutralizing antibody response that peaked between 14 and 21 days after infection. However, effective repeat intramuscular administration of adenovirus vectors was not hindered by the presence of neutralizing antibodies in the serum. Surprisingly, β-galactosidase expression in the skeletal muscle of immunized mice was equivalent to that observed in control mice. As expected, these serum neutralizing antibodies effectively blocked repeat administration of adenovirus vectors when delivered via the intravenous route. These results were observed in both C57BL/6 and Balb/c mice and thus do not appear to be strain specific. Successful repeat administration of adenovirus vectors to skeletal muscle has significant implications for the use of adenovirus vectors clinically and for increasing the safety and efficacy of adenovirus vector gene delivery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wickham TJ et al. Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types Nat Biotechnol 1996 14: 1570–1573

    Article  CAS  PubMed  Google Scholar 

  2. Wickham TJ et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins J Virol 1997 71: 8221–8229

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wickham TJ et al. Targeted adenovirus-mediated gene delivery to T cells via CD3 J Virol 1997 71: 7663–7669

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Michael SI, Hong JS, Curiel DT, Engler JA . Addition of a short peptide ligand to the adenovirus fiber protein Gene Therapy 1995 2: 660–668

    CAS  PubMed  Google Scholar 

  5. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruder JT, Jie T, McVey DL, Kovesdi I . Expression of gp19K increases the persistence of transgene expression from an adenovirus vector in the mouse lung and liver J Virol 1997 71: 7623–7628

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barr D et al. Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains Gene Therapy 1995 2: 151–155

    CAS  PubMed  Google Scholar 

  8. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors Nature Med 1996 2: 545–550

    Article  CAS  PubMed  Google Scholar 

  9. Wadsworth SC, Zhou H, Smith AE, Kaplan JM . Adenovirus vector-infected cells can escape adenovirus antigen-specific cytotoxic T-lymphocyte killing in vivo J Virol 1997 71: 5189–5196

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Michou AI et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression Gene Therapy 1997 4: 473–482

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses J Virol 1995 69: 2004–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo Gene Therapy 1996 3: 137–144

    PubMed  Google Scholar 

  13. Yang Y, Greenough K, Wilson JM . Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver Gene Therapy 1996 3: 412–420

    CAS  PubMed  Google Scholar 

  14. McClane SJ, Chirmule N, Burke CV, Raper SE . Characterization of the immune response after local delivery of recombinant adenovirus in murine pancreas and successful strategies for readministration Hum Gene Ther 1997 8: 2207–2216

    Article  CAS  PubMed  Google Scholar 

  15. Lei D et al. Nondepleting anti-CD4 antibody treatment prolongs lung-directed E1-deleted adenovirus-mediated gene expression in rats Hum Gene Ther 1996 7: 2273–2279

    Article  CAS  PubMed  Google Scholar 

  16. Kolls JK et al. Use of transient CD4 lymphocyte depletion to prolong transgene expression of E1-deleted adenoviral vectors Hum Gene Ther 1996 7: 489–497

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y et al. Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues J Virol 1996 70: 6370–6377

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kay MA et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4lg administration Nat Genet 1995 11: 191–197

    Article  CAS  PubMed  Google Scholar 

  19. Kjellen L, Pereira HG . Role of adenovirus antigens in the induction of virus neutralizing antibody J Gen Virol 1968 2: 177–185

    Article  CAS  PubMed  Google Scholar 

  20. Wohlfart CE, Svensson UK, Everitt E . Interaction between HeLa cells and adenovirus type 2 virions neutralized by different antisera J Virol 1985 56: 896–903

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wohlfart C . Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms J Virol 1988 62: 2321–2328

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Horwitz MS . Adenoviridae and their replication. In: Fields BN et al (eds) Virology Raven Press: New York 1990 pp 1679–1721

    Google Scholar 

  23. Kass-Eisler A et al. Circumventing the immune response to adenovirus-mediated gene therapy Gene Therapy 1996 3: 154–162

    CAS  PubMed  Google Scholar 

  24. Mastrangeli A et al. ‘Sero-switch’ adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype Hum Gene Ther 1996 7: 79–87

    Article  CAS  PubMed  Google Scholar 

  25. Mack CA et al. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype Hum Gene Ther 1997 8: 99–109

    Article  CAS  PubMed  Google Scholar 

  26. Ilan Y et al. Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression Proc Natl Acad Sci USA 1997 94: 2587–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benihoud K et al. Efficient, repeated adenovirus-mediated gene transfer in mice lacking both tumor necrosis factor alpha and lymphotoxin alpha J Virol 1998 72: 9514–9525

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chirmule N et al. Role of E4 in eliciting CD4 T-cell and B-cell responses to adenovirus vectors delivered to murine and nonhuman primate lungs J Virol 1998 7: 6138–6145

    Google Scholar 

  29. Setoguchi Y, Jaffe HA, Chu CS, Crystal RG . Intraperitoneal in vivo gene therapy to deliver alpha 1-antitrypsin to the systemic circulation Am J Respir Cell Mol Biol 1994 10: 369–377

    Article  CAS  PubMed  Google Scholar 

  30. Smith TA et al. Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector Gene Therapy 1996 3: 496–502

    CAS  PubMed  Google Scholar 

  31. Yei S et al. Adenovirus-mediated gene transfer to cystic fibrosis: quantitative evaluation of repeated in vivo vector administration to the lung Gene Therapy 1994 1: 192–200

    CAS  PubMed  Google Scholar 

  32. Van Ginkel FW et al. Intratracheal gene delivery with adenoviral vector induces elevated systemic IgG and mucosal IgA antibodies to adenovirus and beta-galactosidase Hum Gene Ther 1995 6: 895–903

    Article  CAS  PubMed  Google Scholar 

  33. Gahery-Segard H et al. Humoral immune response to the capsid components of recombinant adenoviruses: routes of immunization modulate virus-induced Ig subclass shifts Eur J Immunol 1997 27: 653–659

    Article  CAS  PubMed  Google Scholar 

  34. Bennett J, Pakola S, Zeng Y, Maguire A . Humoral response after administration of E1-deleted adenoviruses: immune privilege of the subretinal space Hum Gene Ther 1996 7: 1763–1769

    Article  CAS  PubMed  Google Scholar 

  35. Green DR, Ware CF . Fas-ligand: privilege and peril Proc Natl Acad Sci USA 1997 94: 5986–5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bramson JL, Hitt M, Gauldie J, Graham FL . Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12but inhibits virus dissemination Gene Therapy 1997 4: 1069–1076

    Article  CAS  PubMed  Google Scholar 

  37. Li Z et al. Efficacy of multiple administrations of a recombinant adenovirus expressing wild-type p53 in an immune-competent mouse tumor model Gene Therapy 1998 5: 605–613

    Article  CAS  PubMed  Google Scholar 

  38. Li JJ et al. Percutaneous transluminal gene transfer into canine myocardium in vivo by replication-defective adenovirus Cardiovasc Res 1995 30: 97–105

    Article  CAS  PubMed  Google Scholar 

  39. Ueno H et al. Quantitative analysis of repeat adenovirus-mediated gene transfer into injured canine femoral arteries Arterioscler Thromb Vasc Biol 1995 15: 2246–2253

    Article  CAS  PubMed  Google Scholar 

  40. Schulick AH et al. Established immunity precludes adenovirus-mediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity J Clin Invest 1997 99: 209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mack CA et al. Salvage angiogenesis induced by adenovirus-mediated gene transfer of vascular endothelial growth factor protects against ischemic vascular occlusion J Vasc Surg 1998 27: 699–709

    Article  CAS  PubMed  Google Scholar 

  42. Rivard A et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF Am J Pathol 1999 154: 355–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mack CA et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart J Thorac Cardiovasc Surg 1998 115: 168–176; discussion 76–77

    Article  CAS  PubMed  Google Scholar 

  44. Giordano FJ et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart (see comments) Nature Med 1996 2: 534–539

    Article  CAS  PubMed  Google Scholar 

  45. Arai H, Gordon D, Nabel EG, Nabel GJ . Gene transfer of Fas ligand induces tumor regression in vivo Proc Natl Acad Sci USA 1997 94: 13862–13867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Larregina AT et al. FasL induces Fas/Apo1-mediated apoptosis in human embryonic kidney 293 cells routinely used to generate E1-deleted adenoviral vectors Gene Therapy 1998 5: 563–568

    Article  CAS  PubMed  Google Scholar 

  47. Chen P, Tian J, Kovesdi I, Bruder JT . Interaction of the adenovirus 14.7-kDa protein with FLICE inhibits Fas ligand-induced apoptosis J Biol Chem 1998 273: 5815–5820

    Article  CAS  PubMed  Google Scholar 

  48. Muruve DA et al. Adenovirus-mediated expression of Fas ligand induces hepatic apoptosis after Systemic administration and apoptosis of ex vivo-infected pancreatic islet allografts and isografts Hum Gene Ther 1997 8: 955–963

    Article  CAS  PubMed  Google Scholar 

  49. Piedra PA et al. Incidence and prevalence of neutralizing antibodies to the common adenoviruses in children with cystic fibrosis: implication for gene therapy with adenovirus vectors Pediatrics 1998 101: 1013–1019

    Article  CAS  PubMed  Google Scholar 

  50. Chinnadurai G, Chinnadurai S, Brusca J . Physical mapping of a large-plaque mutation of adenovirus type 2 J Virol 1979 32: 623–628

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Graham FL, Smiley J, Russell WC, Nairu R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Lee, Peter Genis and Emanuel Haney Jr for support with animal surgery, vector administration and animal care, Alena Lizonova, Angela Appiah and Lu Qin for their support with virus production and cell culture and Lisa DeBruyne, He Wang, Joan Keiser, David Gordon, Rob Panek, Mike Flynn, Doug Brough, Tom Wickham and Paul Fischer for insightful discussions. We also thank Rena Cohen and Kelly Raygor for preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Kovesdi, I. & Bruder, J. Effective repeat administration with adenovirus vectors to the muscle. Gene Ther 7, 587–595 (2000). https://doi.org/10.1038/sj.gt.3301137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301137

Keywords

This article is cited by

Search

Quick links