Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Utilization of variant-type of human α-fetoprotein promoter in gene therapy targeting for hepatocellular carcinoma

Abstract

We previously reported that the retroviral vector (LNAFW0.3TK) expressing the herpes simplex thymidine kinase (HSVtk) gene under the control of the 0.3 kb human α-fetoprotein (AFP) promoter provided the ganciclovir (GCV)-mediated cytotoxicity in the high AFP-producing (HuH-7) but not in the low AFP-producing (huH-1/cl.2) human hepatoma cells. In the present study, we constructed the retroviral vector (LNAFM0.3TK) in which the HSVtk gene expression is regulated by the variant-type of the 0.3 kb human AFP promoter with a G-to-A substitution at nucleotide −119, a point mutation responsible for hereditary persistence of human AFP and the vector was applied to three human hepatoma cell lines, HuH-7, huH-1/cl.2 and intermediate AFP-producing cells (PLC/PRF/5). By the reporter gene transfection assay, the activity of the variant-type of the promoter was much higher than that of the wild-type of the promoter in both HuH-7 and huH-1/cl.2 cells. Consistent with this, LNAFM0.3TK infection could sensitize huH-1/cl.2 cells, as well as HuH-7 and PLC/PRF/5 cells to GCV, but did not affect cell growth of nonhepatoma cells (HeLa). In addition, the bystander effect was achieved more efficiently by LNAFM0.3TK infection than LNAFW0.3TK infection in HuH-7 cells. These results suggest that the variant-type of the human AFP promoter ensures the therapeutic gene expression in gene therapy particularly for the low AFP-producing hepatoma cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Levin B, Amos C . Therapy of unresectable hepatocellular carcinoma New Engl J Med 1995 332: 1294–1296

    Article  CAS  PubMed  Google Scholar 

  2. Sato Y et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein New Engl J Med 1993 328: 1802–1806

    Article  CAS  PubMed  Google Scholar 

  3. Liver Cancer Study Group of Japan . Primary liver cancer in Japan. Clinicopathologic features and results of surgical treatment Ann Surg 1990 211: 277–287

    Google Scholar 

  4. Huber BE, Richards CA, Krenitsky TA . Retrovirus-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy Proc Natl Acad Sci USA 1991 88: 8039–8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ido A et al. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter Cancer Res 1995 55: 3105–3109

    CAS  PubMed  Google Scholar 

  6. Kuriyama S et al. Tissue-specific expression of HSVtk gene can induce efficient antitumor effect and protective immunity to wild-type hepatocellular carcinoma Int J Cancer 1997 71: 470–475

    Article  CAS  PubMed  Google Scholar 

  7. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  9. Paul S, Dummer S . Topics in clinical pharmacology: ganciclovir Am J Med Sci 1992 304: 272–277

    Article  CAS  PubMed  Google Scholar 

  10. McVey JH et al. A G→A substitution in an HNF I binding site in the human alpha-fetoprotein gene is associated with hereditary persistence of alpha-fetoprotein (HPAFP) Hum Mol Genet 1993 2: 379–384

    Article  CAS  PubMed  Google Scholar 

  11. Freeman SM et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  12. Alpert ME, Uriel J, Nechaud Bd . Alpha-1 fetoglobulin in the diagnosis of human hepatoma New Engl J Med 1968 278: 984–986

    Article  CAS  PubMed  Google Scholar 

  13. Hatano M et al. Hepatocyte growth factor down-regulates the alpha-fetoprotein gene expression in PLC/PRF/5 human hepatoma cells Biochem Biophys Res Commun 1992 189: 385–391

    Article  CAS  PubMed  Google Scholar 

  14. Mitsuoka S et al. Inhibitory effect of prostaglandin delta 12-PGJ2 on cell proliferation and alpha-fetoprotein expression in HuH-7 human hepatoma cells Prostaglandins 1992 43: 189–197

    Article  CAS  PubMed  Google Scholar 

  15. Nakao K et al. Transforming growth factor beta 1 differentially regulates alpha-fetoprotein and albumin in HuH-7 human hepatoma cells Biochem Biophys Res Commun 1991 174: 1294–1299

    Article  CAS  PubMed  Google Scholar 

  16. Nakata K et al. A possible mechanism of inverse developmental regulation of alpha-fetoprotein and albumin genes. Studies with epidermal growth factor and phorbol ester J Biol Chem 1992 267: 1331–1334

    CAS  PubMed  Google Scholar 

  17. Tsutsumi T et al. Regulation of albumin and alpha-fetoprotein gene expression by colloid osmotic pressure in human hepatoma cells Gastroenterology 1993 104: 256–262

    Article  CAS  PubMed  Google Scholar 

  18. Nakabayashi H et al. A position-dependent silencer plays a major role in repressing alpha-fetoprotein expression in human hepatoma Mol Cell Biol 1991 11: 5885–5893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vacher J, Tilghman SM . Dominant negative regulation of the mouse alpha-fetoprotein gene in adult liver Science 1990 250: 1732–1735

    Article  CAS  PubMed  Google Scholar 

  20. Nahon JL et al. The rat alpha-fetoprotein and albumin genes. Transcriptional control and comparison of the sequence organization and promoter region J Biol Chem 1987 262: 12479–12487

    CAS  PubMed  Google Scholar 

  21. Sawadaishi K, Morinaga T, Tamaoki T . Interaction of a hepatoma-specific nuclear factor with transcription-regulatory sequences of the human alpha-fetoprotein and albumin genes Mol Cell Biol 1988 8: 5179–5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bois-Joyeux B, Danan JL . Members of the CAAT/enhancer-binding protein, hepatocyte nuclear factor-1 and nuclear factor-1 families can differentially modulate the activities of the rat alpha- fetoprotein promoter and enhancer Biochem J 1994 301: 49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Otsuru A et al. Analysis of alpha-fetoprotein gene expression in hepatocellular carcinoma and liver cirrhosis by in situ hybridization Cancer 1988 62: 1105–1112

    Article  CAS  PubMed  Google Scholar 

  24. Ng IO et al. Prognostic significance of proliferating cell nuclear antigen expression in hepatocellular carcinoma Cancer 1994 73: 2268–2274

    Article  CAS  PubMed  Google Scholar 

  25. Mawatari F et al. Retrovirus-mediated gene therapy for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by human a-fetoprotein enhancer directly linked to its promoter Cancer Gene Ther 1998 5: 301–306

    CAS  PubMed  Google Scholar 

  26. Ueki T et al. Retrovirus-mediated gene therapy for human hepatocellular carcinoma transplanted in athymic mice Int J Mol Med 1998 1: 671–675

    CAS  PubMed  Google Scholar 

  27. Kanai F et al. Gene therapy for alpha-fetoprotein-producing human hepatoma cells by adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene Hepatology 1996 23: 1359–1368

    CAS  PubMed  Google Scholar 

  28. Wills KN et al. Gene therapy for hepatocellular carcinoma: chemosensitivity conferred by adenovirus-mediated transfer of the HSV-1 thymidine kinase gene Cancer Gene Ther 1995 2: 191–197

    CAS  PubMed  Google Scholar 

  29. Nakabayashi H et al. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium Cancer Res 1982 42: 3858–3863

    CAS  PubMed  Google Scholar 

  30. Nakabayashi H et al. Phenotypical stability of a human hepatoma cell line, HuH- 7, in long-term culture with chemically defined medium Gann 1984 75: 151–158

    CAS  PubMed  Google Scholar 

  31. Tsutsumi T et al. Reciprocal regulation of alpha-fetoprotein and albumin gene expression by butyrate in human hepatoma cells Gastroenterology 1994 107: 499–504

    Article  CAS  PubMed  Google Scholar 

  32. Felgner PL et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure Proc Natl Acad Sci USA 1987 84: 7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gorman CM, Moffat LF, Howard BH . Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells Mol Cell Biol 1982 2: 1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, H., Nakata, K., Mawatari, F. et al. Utilization of variant-type of human α-fetoprotein promoter in gene therapy targeting for hepatocellular carcinoma. Gene Ther 6, 465–470 (1999). https://doi.org/10.1038/sj.gt.3300870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300870

Keywords

This article is cited by

Search

Quick links