Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Peritoneal cancer treatment with CYP2B1 transfected, microencapsulated cells and ifosfamide

Abstract

The prognosis of peritoneal spread from gastrointestinal cancer and subsequent malignant ascites is poor, and current medical treatments available are mostly ineffective. Targeted chemotherapy with intraperitoneal prodrug activation may be a beneficial new approach. L293 cells were genetically modified to express the cytochrome P450 enzyme 2B1 under the control of a cytomegalovirus immediate early promoter. This CYP2B1 enzyme converts ifosfamide to its active cytotoxic compounds. The cells are encapsulated in a cellulose sulfate formulation (Capcell™). Adult Balb/c mice were inoculated intraperitoneally with 1 × 106 colon 26 cancer cells, previously transfected with GFP to emit a stable green fluorescence, by injection into the left lower abdominal quadrant. Two or five day's later animals were randomly subjected to either i.p. treatment with ifosfamide alone or ifosfamide combined with microencapsulated CYP2B1-expressing cells. Peritoneal tumor volume and tumor viability were assessed 10 days after tumor inoculation by means of fluorescence microscopy, spectroscopy and histology. Early i.p. treatment with ifosfamide and CYP2B1 cells resulted in a complete response. Treatment starting on day 5 and single-drug treatment with ifosfamide resulted in a partial response. These results suggest that targeted i.p. chemotherapy using a combination of a prodrug and its converting enzyme may be a successful treatment strategy for peritoneal spread from colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Glehen O, Gilly FN . Quantitative prognostic indicators of peritoneal surface malignancy: carcinomatosis, sarcomatosis, and peritoneal mesothelioma. Surg Oncol Clin N Am 2003; 12: 649–671.

    Article  PubMed  Google Scholar 

  2. Glehen O, Osinsky D, Beaujard AC, Gilly FN . Natural history of peritoneal carcinomatosis from nongynecologic malignancies. Surg Oncol Clin N Am 2003; 12: 729–739, xiii.

    Article  PubMed  Google Scholar 

  3. McQuellon RP, Loggie BW, Fleming RA, Russell GB, Lehman AB, Rambo TD . Quality of life after intraperitoneal hyperthermic chemotherapy (IPHC) for peritoneal carcinomatosis. Eur J Surg Oncol 2001; 27: 65–73.

    Article  CAS  PubMed  Google Scholar 

  4. McQuellon RP, Loggie BW, Lehman AB, Russell GB, Fleming RA, Shen P et al. Long-term survivorship and quality of life after cytoreductive surgery plus intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis. Ann Surg Oncol 2003; 10: 155–162.

    Article  PubMed  Google Scholar 

  5. Sugarbaker PH . New responsibilities in the management of colorectal cancer with peritoneal seeding. Cancer Invest 2002; 20: 1118–1122.

    Article  PubMed  Google Scholar 

  6. Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 2002; 99: 130–137.

    Article  CAS  PubMed  Google Scholar 

  7. Dirven HA, van Ommen B, van Bladeren PJ . Glutathione conjugation of alkylating cytostatic drugs with a nitrogen mustard group and the role of glutathione S-transferases. Chem Res Toxicol 1996; 9: 351–360.

    Article  CAS  PubMed  Google Scholar 

  8. Kurowski V, Wagner T . Comparative pharmacokinetics of ifosfamide, 4-hydroxyifosfamide, chloroacetaldehyde, and 2- and 3-dechloroethylifosfamide in patients on fractionated intravenous ifosfamide therapy. Cancer Chemother Pharmacol 1993; 33: 36–42.

    Article  CAS  PubMed  Google Scholar 

  9. Yu LJ, Drewes P, Gustafsson K, Brain EG, Hecht JE, Waxman DJ . In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. J Pharmacol Exp Ther 1999; 288: 928–937.

    CAS  PubMed  Google Scholar 

  10. Kusnierczyk H, Pajtasz-Piasecka E, Radzikowski C . Synergistic antitumour effects of chemo-immunotherapy with an oxazaphosphorine drug and IL-2-secreting cells in a mouse colon cancer model. Med Oncol 1999; 16: 267–278.

    Article  CAS  PubMed  Google Scholar 

  11. Silbermann MH, vd VB, Stoter G, Nooter K, Verweij J . Combination therapy of ACNU and ifosfamide in tumor bearing mice with M2661 breast cancer, B16 malignant melanoma or C38 colon cancer. Eur J Cancer 1990; 26: 321–325.

    Article  CAS  PubMed  Google Scholar 

  12. Struck RF, Dykes DJ, Corbett TH, Suling WJ, Trader MW . Isophosphoramide mustard, a metabolite of ifosfamide with activity against murine tumours comparable to cyclophosphamide. Br J Cancer 1983; 47: 15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bunnell CA, Thompson L, Buswell L, Berkowitz R, Muto M, Sheets E et al. A Phase I trial of ifosfamide and paclitaxel with granulocyte-colony stimulating factor in the treatment of patients with refractory solid tumors. Cancer 1998; 82: 561–566.

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Waxman DJ . Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res 1995; 55: 581–589.

    CAS  PubMed  Google Scholar 

  15. Okada N, Miyamoto H, Yoshioka T, Sakamoto K, Katsume A, Saito H et al. Immunological studies of SK2 hybridoma cells microencapsulated with alginate-poly(L)lysine-alginate (APA) membrane following allogeneic transplantation. Biochem Biophys Res Commun 1997; 230: 524–527.

    Article  CAS  PubMed  Google Scholar 

  16. Löhr M, Müller P, Karle P, Stange J, Mitzner S, Jesnowski R et al. Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. Gene Therapy 1998; 5: 1070–1078.

    Article  PubMed  Google Scholar 

  17. Löhr M, Hoffmeyer A, Kröger J, Freund M, Hain J, Holle A et al. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 2001; 357: 1591–1592.

    Article  PubMed  Google Scholar 

  18. Karle P, Müller P, Renz R, Jesnowski R, Saller R, von Rombs K et al. Intratumoral injection of encapsulated cells producing an oxazaphosphorine activating cytochrome P450 for targeted chemotherapy. Adv Exp Med Biol 1998; 451:97–106.

    Article  CAS  PubMed  Google Scholar 

  19. Kammertoens T, Gelbmann W, Karle P, Alton K, Saller R, Salmons B et al. Combined chemotherapy of murine mammary tumors by local activation of the prodrugs ifosfamide and 5-fluorocytosine. Cancer Gene Ther 2000; 7: 629–636.

    Article  CAS  PubMed  Google Scholar 

  20. Guide for the Care and Use of Laboratory Animals. National Research Council. Institute of Laboratory Animal Resources. Commission on Life Sciences. Washington DC: National Academy Press; 1996.

  21. Interdisciplinary principles and guidelines for the use of animals in research, testing, and education. A report of the Ad Hoc Committee on Animal Research. NY: Academy of Sciences; 1988.

  22. Sturm JW, Magdeburg R, Berger K, Petruch B, Samel S, Bönninghoff R et al. Influence of TNF alpha on the formation of liver metastases in a syngenic mouse model. Int J Cancer 2003; 107: 11–21.

    Article  CAS  PubMed  Google Scholar 

  23. Sturm JW, Keese MA, Petruch B, Bonninghoff RG, Zhang H, Gretz N et al. Enhanced green fluorescent protein-transfection of murine colon carcinoma cells: key for early tumor detection and quantification. Clin Exp Metastasis 2003; 20: 395–405.

    Article  PubMed  Google Scholar 

  24. Löhr JM, Saller R, Salmons B, Günzburg WH . Microencapsulation of genetically engineered cells for cancer therapy. Methods Enzymol 2002; 346: 603–618.

    Article  PubMed  Google Scholar 

  25. Donato MT, Gomez-Lechon MJ, Castell JV . A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates. Anal Biochem 1993; 213: 29–33.

    Article  CAS  PubMed  Google Scholar 

  26. Beyer WH . CRC Standard Mathematical Table. Boca Raton, FL: CRC Press; 1987.

    Google Scholar 

  27. Gahlen J, Pietschmann M, Prosst RL, Herfarth C . Systemic vs local administration of delta-aminolevulinic acid for laparoscopic fluorescence diagnosis of malignant intra-abdominal tumors. Exp Study. Surg Endosc 2001; 15: 196–199.

    Article  CAS  Google Scholar 

  28. Ibrahim SM, Ringel J, Schmidt C, Ringel B, Müller P, Koczan D et al. Pancreatic adenocarcinoma cell lines show variable susceptibility to TRAIL-mediated cell death. Pancreas 2001; 23: 72–79.

    Article  CAS  PubMed  Google Scholar 

  29. Bonenkamp JJ, Sasako M, Hermans J, van de Velde CJ . Tumor load and surgical palliation in gastric cancer. Hepatogastroenterology 2001; 48: 1219–1221.

    CAS  PubMed  Google Scholar 

  30. Elias DM, Pocard M . Treatment and prevention of peritoneal carcinomatosis from colorectal cancer. Surg Oncol Clin N Am 2003; 12: 543–559.

    Article  PubMed  Google Scholar 

  31. Mohamed F, Sugarbaker PH . Peritoneal mesothelioma. Curr Treat Options Oncol 2002; 3: 375–386.

    Article  PubMed  Google Scholar 

  32. Moran BJ, Cecil TD . The etiology, clinical presentation, and management of pseudomyxoma peritonei. Surg Oncol Clin N Am 2003; 12: 585–603.

    Article  PubMed  Google Scholar 

  33. Markman M . Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol 2003; 4: 277–283.

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz PS, Waxman DJ . Cyclophosphamide induces caspase 9-dependent apoptosis in 9L tumor cells. Mol Pharmacol 2001; 60: 1268–1279.

    Article  CAS  PubMed  Google Scholar 

  35. Karle P, Renner M, Salmons B, Günzburg WH . Necrotic, rather than apoptotic, cell death caused by cytochrome P450-activated ifosfamide. Cancer Gene Ther 2001; 8: 220–230.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng JJ, Chan KK, Muggia F . Preclinical pharmacokinetics and stability of isophosphoramide mustard. Cancer Chemother Pharmacol 1994; 33: 391–398.

    Article  CAS  PubMed  Google Scholar 

  37. Jounaidi Y, Hecht JE, Waxman DJ . Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res 1998; 58: 4391–4401.

    CAS  PubMed  Google Scholar 

  38. Chen L, Yu LJ, Waxman DJ . Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res 1997; 57: 4830–4837.

    CAS  PubMed  Google Scholar 

  39. Jounaidi Y, Waxman DJ . Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy. Cancer Res 2004; 64: 292–303.

    Article  CAS  PubMed  Google Scholar 

  40. Zagzag D, Miller DC, Chiriboga L, Yee H, Newcomb EW . Green fluorescent protein immunohistochemistry as a novel experimental tool for the detection of glioma cell invasion in vivo. Brain Pathol 2003; 13: 34–37.

    Article  PubMed  Google Scholar 

  41. Murphy BO, Joshi S, Kessinger A, Reed E, Sharp JG . A murine model of bone marrow micrometastasis in breast cancer. Clin Exp Metastasis 2002; 19: 561–569.

    Article  PubMed  Google Scholar 

  42. Diehn FE, Costouros NG, Miller MS, Feldman AL, Alexander HR, Li KC et al. Noninvasive fluorescent imaging reliably estimates biomass in vivo. Biotechniques 2002; 33: 1250–1252, 1254–1255.

    Article  CAS  PubMed  Google Scholar 

  43. Gahlen J, Prosst RL, Pietschmann M, Haase T, Rheinwald M, Skopp G et al. Laparoscopic fluorescence diagnosis for intraabdominal fluorescence targeting of peritoneal carcinosis experimental studies. Ann Surg 2002; 235: 252–260.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our medical technicians Mrs B Heidrich, Mrs C Jost and Mrs A Gruber from the research lab of the Department of Surgery for providing tumor cells and preparing histological specimens and Mrs N Decker for performing spectroscopy. We thank Bavarian Nordic GmbH, Martinsried, for supplying the Capcell™.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Samel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samel, S., Keese, M., Lux, A. et al. Peritoneal cancer treatment with CYP2B1 transfected, microencapsulated cells and ifosfamide. Cancer Gene Ther 13, 65–73 (2006). https://doi.org/10.1038/sj.cgt.7700849

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700849

Keywords

This article is cited by

Search

Quick links