Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus-mediated PTEN treatment combined with caffeine produces a synergistic therapeutic effect in colorectal cancer cells

Abstract

The tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 (PTEN) gene is a negative regulator of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt/PKB) signaling pathway. Overexpression of PTEN in cancer cells results in cell-cycle arrest and cell death through inhibition of PI3K. Caffeine, a xanthine analogue, is well known to enhance the cytocidal and growth-inhibitory effects of DNA-damaging agents such as radiation, UV light, and anticancer agents on tumor cells by abrogating DNA-damage checkpoints through inhibition of ataxia-telangiectasia-mutated (ATM), and ATM and Rad3-related (ATR) kinase activity. In this study, we demonstrate that treatment with a combination of adenovirus-mediated transfer of PTEN (Ad-PTEN) and caffeine synergistically suppressed cell growth and induced apoptosis in colorectal cancer cells but not in normal colorectal fibroblast cells. This synergistic effect was induced through abrogation of G2/M arrest, downregulation of the Akt pathway, and modulation of the p44/42MAPK pathway. Thus, combined treatment with Ad-PTEN and caffeine is a potential therapy for colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–1947.

    Article  CAS  Google Scholar 

  2. Cairns P, Okami K, Halachmi S, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 1997;57:4997–5000.

    CAS  PubMed  Google Scholar 

  3. Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57:3935–3940.

    CAS  PubMed  Google Scholar 

  4. Wang SI, Puc J, Li J, et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res. 1997;57:4183–4186.

    CAS  PubMed  Google Scholar 

  5. Yokomizo A, Tindall DJ, Drabkin H, et al. PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers. Oncogene. 1998;17:475–479.

    Article  CAS  Google Scholar 

  6. Cheney W, Johnson D, Vaillancourt M-T, et al. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer. Cancer Res. 1998;58:2331–2334.

    CAS  PubMed  Google Scholar 

  7. Davies MA, Lu Y, Sano T, et al. Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res. 1998;58:5285–5290.

    CAS  PubMed  Google Scholar 

  8. Furnari FB, Huang HJ, Cavenee WK . The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res. 1998;58:5002–5008.

    CAS  PubMed  Google Scholar 

  9. Li DM, Sun H . PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA. 1998;95:15406–15411.

    Article  CAS  Google Scholar 

  10. Minaguchi T, Mori T, Kanamori Y, et al. Growth suppression of human ovarian cancer cells by adenovirus-mediated transfer of the PTEN gene. Cancer Res. 1999;59:6063–6067.

    CAS  PubMed  Google Scholar 

  11. Weng LP, Gimm O, Kum JB, et al. Transient ectopic expression of PTEN in thyroid cancer cell lines induces cell cycle arrest and cell type-dependent cell death. Hum Mol Genet. 2001;10:251–258.

    Article  CAS  Google Scholar 

  12. Saito Y, Swanson X, Mhashilkar A, et al. Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo. Gene Therapy. (in press).

  13. Elledge SJ . Cell cycle checkpoints: preventing an identity crisis. Science. 1996;274:1664–1672.

    Article  CAS  Google Scholar 

  14. O'Connor PM . Mammalian G1 and G2 phase checkpoints. Cancer Surv. 1997;29:151–182.

    CAS  PubMed  Google Scholar 

  15. Hartwell LH, Kastan MB . Cell cycle control and cancer (review). Science. 1994;266:1821–1828.

    Article  CAS  Google Scholar 

  16. IARC. IARC monograph evaluative carcinogen risks humans. 1991.

  17. Mirvish SS, Cardesa A, Wallcave L, Shubik P . Induction of mouse lung adenomas by amines or ureas plus nitrite and by N-nitroso compounds: effect of ascorbate, gallic acid, thiocyanate, and caffeine. Nat Cancer Inst. 1975;55:633–636.

    Article  CAS  Google Scholar 

  18. Nomura T . Diminution of tumorigenesis initiated by 4-nitroquinoline-1-oxide by post-treatment with caffeine in mice. Nature. 1976;260:547–549.

    Article  CAS  Google Scholar 

  19. Nomura T . Comparative inhibiting effects of methylxanthines on urethane-induced tumors, malformations, and presumed somatic mutations in mice. Cancer Res. 1983;43:1342–1346.

    CAS  PubMed  Google Scholar 

  20. Theiss JC, Shimkin MB . Inhibiting effect of caffeine on spontaneous and urethane-induced lung tumors in strain A mice. Cancer Res. 1978;38:1757–1761.

    CAS  PubMed  Google Scholar 

  21. Welsch CW . Caffeine and the development of the normal and neoplastic mammary gland. Proc Soc Exp Biol Med. 1994;207:1–12.

    Article  CAS  Google Scholar 

  22. Nishikawa A, Furukawa F, Imazawa T, Ikezaki S, Hasegawa T, Takahashi M . Effects of caffeine on glandular stomach carcinogenesis induced in rats by N-methyl-N′-nitro-N-nitrosoguanidine and sodium chloride. Food Chem Toxicol. 1995;33:21–26.

    Article  CAS  Google Scholar 

  23. Nishikawa A, Furukawa F, Imazawa T, Yoshimura H, Mitsumori K, Takahashi M . Effects of caffeine, nicotine, ethanol and sodium selenite on pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl)amine. Carcinogenesis. 1992;13:1379–1382.

    Article  CAS  Google Scholar 

  24. Huang MT, Xie JG, Wang ZY, et al. Effects of tea, decaffeinated tea, and caffeine on UVB light-induced complete carcinogenesis in SKH-1 mice: demonstration of caffeine as a biologically important constituent of tea. Cancer Res. 1997;57:2623–2629.

    CAS  PubMed  Google Scholar 

  25. Zajdela F, Latarjet R . Inhibition of skin carcinogenesis in vivo by caffeine and other agents. Natl Cancer Inst Monogr. 1978;133–140.

  26. Lau CC, Pardee AB . Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc Natl Acad Sci USA. 1982;79:2942–2946.

    Article  CAS  Google Scholar 

  27. Matsuoka S, Huang M, Elledge SJ . Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998;282:1893–1897.

    Article  CAS  Google Scholar 

  28. Sarkaria JN, Busby EC, Tibbetts RS, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999;59:4375–4382.

    CAS  PubMed  Google Scholar 

  29. Schlegel R, Pardee AB . Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science. 1986;232:1264–1266.

    Article  CAS  Google Scholar 

  30. Stewart AL, Mhashilkar AM, Yang XH, et al. PI3K blockade by Ad-PTEN inhibits invasion and induces apoptosis in radial growth phase and metastatic melanoma cells. Mol Med. 2002;8:451–461.

    Article  CAS  Google Scholar 

  31. Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL . An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 1991;142:257–265.

    Article  CAS  Google Scholar 

  32. Nishizaki M, Meyn RE, Levy LB, et al. Synergistic inhibition of human lung cancer cell growth by adenovirus-mediated wild-type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo. Clin Cancer Res. 2001;7:2887–2897.

    CAS  PubMed  Google Scholar 

  33. Taylor V, Wong M, Brandts C, et al. 5′ Phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol. 2000;20:6860–6871.

    Article  CAS  Google Scholar 

  34. Gu J, Tamura M, Yamada KM . Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol. 1998;143:1375–1383.

    Article  CAS  Google Scholar 

  35. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM . Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998;280:1614–1617.

    Article  CAS  Google Scholar 

  36. DeFrank JS, Tang W, Powell SN . p53-null cells are more sensitive to ultraviolet light only in the presence of caffeine. Cancer Res. 1996;56:5365–5368.

    CAS  PubMed  Google Scholar 

  37. Powell SN, DeFrank JS, Connell P, et al. Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res. 1995;55:1643–1648.

    CAS  PubMed  Google Scholar 

  38. Yao SL, Akhtar AJ, McKenna KA, et al. Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat Med. 1996;2:1140–1143.

    Article  CAS  Google Scholar 

  39. Cross SM, Sanchez CA, Morgan CA, et al. A p53-dependent mouse spindle checkpoint. Science. 1995;267:1353–1356.

    Article  CAS  Google Scholar 

  40. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB . Wildtype p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA. 1992;89:7491–7495.

    Article  CAS  Google Scholar 

  41. Tsuiki H, Nitta M, Tada M, Inagaki M, Ushio Y, Saya H . Mechanism of hyperploid cell formation induced by microtubule-inhibiting drug in glioma cell lines. Oncogene. 2001;20:420–429.

    Article  CAS  Google Scholar 

  42. Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB . PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem. 2002;277:5484–5489.

    Article  CAS  Google Scholar 

  43. Tsuchiya H, Mori Y, Ueda Y, Okada G, Tomita K . Sensitization and caffeine potentiation of cisplatin cytotoxicity resulting from introduction of wild-type p53 gene in human osteosarcoma. Anticancer Res. 2000;20:235–242.

    CAS  PubMed  Google Scholar 

  44. Dunphy WG, Kumagai A . The cdc25 protein contains an intrinsic phosphatase activity. Cell. 1991;67:189–196.

    Article  CAS  Google Scholar 

  45. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig R . Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51:6304–6311.

    CAS  PubMed  Google Scholar 

  46. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997;277:1501–1505.

    Article  CAS  Google Scholar 

  47. Sebastian B, Kakizuka A, Hunter T . Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc Natl Acad Sci USA. 1993;90:3521–3524.

    Article  CAS  Google Scholar 

  48. Thompson DA, Belinsky G, Chang TH, Jones DL, Schlegel R, Munger K . The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene. 1997;15:3025–3035.

    Article  CAS  Google Scholar 

  49. Taylor WR, Stark GR . Regulation of the G2/M transition by p53. Oncogene. 2001;20:1803–1815.

    Article  CAS  Google Scholar 

  50. Tsuneoka M, Mekada E . Ras/MEK signaling suppresses Myc-dependent apoptosis in cells transformed by c-myc and activated ras. Oncogene. 2000;19:115–123.

    Article  CAS  Google Scholar 

  51. Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM . Serine/threonine protein kinases and apoptosis. Exp Cell Res. 2000;256:34–41.

    Article  CAS  Google Scholar 

  52. Seger R, Krebs EG . The MAPK signaling cascade. FASEB J. 1995;9:726–735.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kathryn Hale for editorial assistance and Alma Vega for help in the preparation of this manuscript. This study was partially supported by the Texas Higher Education Coordinating Board ATP/ARP Grant 003657-0078-2001 (RR), by Public Health Service Grant PO1-CA 78778-01A1 (JAR), by a Career Development award from The University of Texas SPORE in Lung Cancer P50CA70907-5 (RR), by M.D. Anderson Cancer Center Institutional Research Grant (RR), by M.D. Anderson Cancer Center Support Grant CA16672, by the W.M. Keck Foundation Fund for Human Cancer Gene Prevention and Therapy (RR), by a BESCT Lung Cancer Program Grant (DAMD17-01-1-0689), by a TARGET Lung Cancer Grant (DAMD17-02-1-0706), and by a sponsored research agreement with Introgen Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajagopal Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Gopalan, B., Mhashilkar, A. et al. Adenovirus-mediated PTEN treatment combined with caffeine produces a synergistic therapeutic effect in colorectal cancer cells. Cancer Gene Ther 10, 803–813 (2003). https://doi.org/10.1038/sj.cgt.7700644

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700644

Keywords

This article is cited by

Search

Quick links