Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of adenoviral wild-type p53 gene transfer in p53 -mutated lymphoma cells

Abstract

The present study assessed the role of adenoviral vector–mediated wild-type p53 gene transfer in B lymphoma cells. Deficiency of p53-mediated cell death is common in human cancer contributing to both tumorigenesis and chemoresistance. Lymphoma cells are being considered as suitable targets for gene therapy protocols. Recently, we reported an adenoviral protocol leading to highly efficient gene transfer to B lymphoma cells. All lymphoma cell lines ( n =5) tested here showed mutations in the p53 gene locus. The aim of this work was to transduce lymphoma cells with the wild-type p53 gene. Using this protocol, 88% of Raji, 75% of Daudi, and 45% of OCI-Ly8-LAM53 cells were transfected with the reporter gene green fluorescent protein at a multiplicity of infection of 200. The expression of green fluorescent protein in CA46 and BL41 cells was 27% and 42%, respectively. At this multiplicity of infection, growth characteristics of lymphoma cell lines were not changed significantly. In contrast, cells transduced with wild-type p53 gene showed an inhibition of proliferation as well as an increase in apoptosis. Cell loss by apoptosis after p53 gene transfer was up to 40% as compared to transduction with an irrelevant vector. In addition, we determined the effects of DNA damage produced by the DNA topoisomerase II inhibitor etoposide on wild-type p53 transfected lymphoma cells. In Ad-p53–transfected Raji cells, treatment with the drug resulted in a marked increase of cell loss in comparison to Ad-β-Gal–transfected cells (45% vs. 77%). Interestingly, performing cytotoxicity studies, we could show an increased sensitivity of Raji and Daudi cells against immunological effector cells. In conclusion, transduction of wild-type p53 into lymphoma cells expressing mutated p53 was efficient and led to inhibition of proliferation and increase in apoptotic rate in some cell lines dependent on p53 mutation. This protocol should have an impact on the use of lymphoma cells in cancer gene therapy protocols. Cancer Gene Therapy (2001) 8, 430–439

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levine AJ, Momand J, Finlay CA . The p53 tumor-suppressor gene Nature 1991 351: 453–456

    Article  CAS  PubMed  Google Scholar 

  2. Symonds H, Krall L, Remington L, et al . p53-dependent apoptosis suppresses tumor growth and progression in vivo Cell 1994 78: 703–711

    Article  CAS  PubMed  Google Scholar 

  3. Kastan MB, Zhan Q, El-Deiry WS, et al . A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia telangiectasia Cell 1992 71: 587–597

    Article  CAS  PubMed  Google Scholar 

  4. Levine AJ . p53, the cellular gatekeeper for growth and division Cell 1997 88: 323–331

    Article  CAS  PubMed  Google Scholar 

  5. Levine AJ, Perry ME, Chang A, et al . The 1993 Walter Hubert Lecture: the role of the p53 tumor-suppressor gene in tumorigenesis Br J Cancer 1994 69: 409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farrell PJ, Allan GJ, Shanahan F, et al . p53 is frequently mutated in Burkitt's lymphoma cell lines EMBO J 1991 10: 2879–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klein G . Epstein-Barr virus strategy in normal and neoplastic B cells Cell 1994 77: 791–793

    Article  CAS  PubMed  Google Scholar 

  8. Gaidano G, Ballerini P, Gong JZ, et al . p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia Proc Natl Acad Sci USA 1991 88: 5413–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhatia KG, Gutierrez MI, Huppi K, et al . The pattern of p53 mutations in Burkitt's lymphoma differs from that of solid tumors Cancer Res 1992 52: 4273–4276

    CAS  PubMed  Google Scholar 

  10. Zhang WW, Fang X, Mazur W, et al . High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus Cancer Gene Ther 1994 1: 5–13

    PubMed  Google Scholar 

  11. Wills KN, Maneval DC, Menzel P, et al . Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer Hum Gene Ther 1994 5: 1079–1088

    Article  CAS  PubMed  Google Scholar 

  12. Chen PL, Chen YM, Bookstein R, et al . Genetic mechanisms of tumor suppression by the human p53 gene Science 1990 250: 1576–1580

    Article  CAS  PubMed  Google Scholar 

  13. Nielsen LL, Maneval DC . p53 tumor-suppressor gene therapy for cancer Cancer Gene Ther 1998 5: 52–63

    CAS  PubMed  Google Scholar 

  14. Prince HM, Dessureault S, Gallinger S, et al . Efficient adenovirus-mediated gene expression in malignant human plasma cells: relative lymphoid cell resistance Exp Hematol 1998 26: 27–36

    CAS  PubMed  Google Scholar 

  15. Blagosklonny MV, El-Deiry WS . In vitro evaluation of a p53-expressing adenovirus as an anticancer drug Int J Cancer 1996 67: 386–392

    Article  CAS  PubMed  Google Scholar 

  16. Buttgereit P, Weineck S, Ropke G, et al . Efficient gene transfer into lymphoma cells using adenoviral vectors combined with lipofection Cancer Gene Ther 2000 7: 1145–1155

    Article  CAS  PubMed  Google Scholar 

  17. Bergelson JM, Cunningham JA, Droguett G, et al . Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  18. Bergelson JM, Krithivas A, Celi L, et al . The murine CAR homolog is a receptor for Coxsackie B viruses and adenoviruses J Virol 1998 72: 415–419

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Davison E, Diaz RM, Hart IR, et al . Integrin alpha5beta1-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16 J Virol 1997 71: 6204–6207

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takayama K, Ueno H, Pei XH, et al . The levels of integrin alpha v beta 5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells Gene Ther 1998 5: 361–368

    Article  CAS  PubMed  Google Scholar 

  21. Fallaux FJ, Kranenburg O, Cramer SJ, et al . Characterization of 911: a new helper cell line for the titration and propagation of early region 1–deleted adenoviral vectors Hum Gene Ther 1996 7: 215–222

    Article  CAS  PubMed  Google Scholar 

  22. Stratford-Perricaudet LD, Makeh I, Perricaudet M, et al . Widespread long-term gene transfer to mouse skeletal muscles and heart J Clin Invest 1992 90: 626–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Graham F, Prevec L . Manipulation of adenovirus vectors Methods Mol Biol 1991 7: 109–128

    CAS  PubMed  Google Scholar 

  24. Brielmeier M, Bechet JM, Falk MH, et al . Improving stable transfection efficiency: antioxidants dramatically improve the outgrowth of clones under dominant marker selection Nucleic Acids Res 1998 26: 2082–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmidt-Wolf I, Negrin R, Kiem H, et al . Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity J Exp Med 1991 174: 139–149

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt-Wolf I, Lefterova P, Johnston V, et al . Propagation of large numbers of T cells with natural killer cell markers Br J Haematol 1994 87: 453–458

    Article  CAS  PubMed  Google Scholar 

  27. Cherney BW, Bhatia KG, Sgadari C, et al . Role of the p53 tumor-suppressor gene in the tumorigenicity of Burkitt's lymphoma cells Cancer Res 1997 57: 2508–2515

    CAS  PubMed  Google Scholar 

  28. Bonsing BA, Corver WE, Gorsira MC, et al . Specificity of seven monoclonal antibodies against p53 evaluated with Western blotting, immunohistochemistry, confocal laser scanning microscopy, and flow cytometry Cytometry 1997 28: 11–24

    Article  CAS  PubMed  Google Scholar 

  29. Fan S, el-Deiry WS, Bae I, et al . p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA-damaging agents Cancer Res 1994 54: 5824–5830

    CAS  PubMed  Google Scholar 

  30. Offit K, Jhanwar SC, Ladanyi M, et al . Cytogenetic analysis of 434 consecutively ascertained specimens of non-Hodgkin's lymphoma: correlations between recurrent aberrations, histology, and exposure to cytotoxic treatment Genes Chromosomes Cancer 1991 3: 189–201

    Article  CAS  PubMed  Google Scholar 

  31. Ramqvist T, Magnusson KP, Wang Y, et al . Wild-type p53 induces apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53 Oncogene 1993 8: 1495–1500

    CAS  PubMed  Google Scholar 

  32. Turturro F, Seth P, Link CJ, Jr . In vitro adenoviral vector p53-mediated transduction and killing correlates with expression of coxsackie adenovirus receptor and alpha (nu)beta5 integrin in SUDHL-1 cells derived from anaplastic large cell lymphoma Clin Cancer Res 2000 6: 185–192

    CAS  PubMed  Google Scholar 

  33. Cantwell MJ, Sharma S, Friedmann T, et al . Adenovirus vector infection of chronic lymphocytic leukemia B cells Blood 1996 88: 4676–4683

    CAS  PubMed  Google Scholar 

  34. Milner J, Medcalf EA . Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation Cell 1991 65: 765–774

    Article  CAS  PubMed  Google Scholar 

  35. Zambetti GP, Levine AJ . A comparison of the biological activities of wild-type and mutant p53 FASEB J 1993 7: 855–865

    Article  CAS  PubMed  Google Scholar 

  36. Wu GS, El-Deiry WS . Apoptotic death of tumor cells correlates with chemosensitivity, independent of p53 or bcl-2 Clin Cancer Res 1996 2: 623–633

    CAS  PubMed  Google Scholar 

  37. Dalla-Favera R, Bregni M, Erikson J, et al . Human c- myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells Proc Natl Acad Sci USA 1982 79: 7824–7827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sandig V, Brand K, Herwig S, et al . Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death Nat Med 1997 3: 313–319

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt-Wolf I, Lefterova P, Mehta B, et al . Phenotypic characterization and identification of effector cells involved in tumor recognition of cytokine-induced killer cells Exp Hematol 1993 21: 1673–1679

    CAS  PubMed  Google Scholar 

  40. Schmidt-Wolf G, Negrin R, Schmidt-Wolf I . Activated T cells and cytokine-induced CD3 +CD56 + killer cells Ann Hematol 1997 74: 51–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was kindly supported by the Wilhelm Sander-Stiftung, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo GH Schmidt-Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttgereit, P., Schakowski, F., Märten, A. et al. Effects of adenoviral wild-type p53 gene transfer in p53 -mutated lymphoma cells. Cancer Gene Ther 8, 430–439 (2001). https://doi.org/10.1038/sj.cgt.7700323

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700323

Keywords

This article is cited by

Search

Quick links