Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Riding the crest to get a head: neural crest evolution in vertebrates

Abstract

In their seminal 1983 paper, Gans and Northcutt proposed that evolution of the vertebrate ‘new head’ was made possible by the advent of the neural crest and cranial placodes. The neural crest is a stem cell population that arises adjacent to the forming CNS and contributes to important cell types, including components of the peripheral nervous system and craniofacial skeleton and elements of the cardiovascular system. In the past few years, the new head hypothesis has been challenged by the discovery in invertebrate chordates of cells with some, but not all, characteristics of vertebrate neural crest cells. Here, we discuss recent findings regarding how neural crest cells may have evolved during the course of deuterostome evolution. The results suggest that there was progressive addition of cell types to the repertoire of neural crest derivatives throughout vertebrate evolution. Novel genomic tools have enabled higher resolution insight into neural crest evolution, from both a cellular and a gene regulatory perspective. Together, these data provide clues regarding the ancestral neural crest state and how the neural crest continues to evolve to contribute to the success of vertebrates as efficient predators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Core elements of the new head hypothesis.
Fig. 2: Neural crest development and gene regulatory networks.
Fig. 3: Evolution of neural crest features throughout deuterostome evolution.

Similar content being viewed by others

References

  1. Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983).

    Article  PubMed  CAS  Google Scholar 

  2. Northcutt, G. R. The new head hypothesis revisited. J. Exp. Zool. B Mol. Dev. Evol. 304B, 274–297 (2005).

    Article  Google Scholar 

  3. Bronner-Fraser, M. On the trail of the ‘new head’ in Les Treilles. Development 135, 2995–2999 (2008).

    Article  PubMed  CAS  Google Scholar 

  4. LaMantia, A.-S. Why does the face predict the brain? Neural crest induction, craniofacial morphogenesis, and neural circuit development. Front. Physiol. 11, 610970 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martik, M. L. & Bronner, M. E. Regulatory logic underlying diversification of the neural crest. Trends Genet. 33, 715–727 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rothstein, M., Bhattacharya, D. & Simoes-Costa, M. The molecular basis of neural crest axial identity. Dev. Biol. 444, S170–S180 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Couly, G., Grapin-Botton, A., Coltey, P., Ruhin, B. & Le Douarin, N. M. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 125, 3445–3459 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. Le Lievre, C. S., Schweizer, G. G., Ziller, C. M. & Le Douarin, N. M. Restrictions of developmental capabilities in neural crest cell derivatives as tested by in vivo transplantation experiments. Dev. Biol. 77, 362–378 (1980).

    Article  PubMed  Google Scholar 

  9. Le Lievre, C. S. & Le Douarin, N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. Development 34, 125–154 (1975).

    Article  Google Scholar 

  10. Le Douarin, N. M. & Teillet, M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol. 30, 31–48 (1973).

    PubMed  Google Scholar 

  11. Waldo, K. et al. A novel role for cardiac neural crest in heart development. J. Clin. Invest. 103, 1499–1507 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tang, W., Martik, M. L., Li, Y. & Bronner, M. E. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. eLife 8, 332 (2019).

    Google Scholar 

  13. Creazzo, T. L., Godt, R. E., Leatherbury, L., Conway, S. J. & Kirby, M. L. Role of cardiac neural crest cells in cardiovascular development. Annu. Rev. Physiol. 60, 267–286 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. Le Douarin, N. M. & Smith, J. Development of the peripheral nervous system from the neural crest. Annu. Rev. Cell Biol. 4, 375–404 (1988).

    Article  PubMed  Google Scholar 

  15. Espinosa-Medina, I. et al. The sacral autonomic outflow is sympathetic. Science 354, 893–897 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Williams, R. M. et al. Reconstruction of the global neural crest gene regulatory network in vivo. Dev. Cell 51, 255–276.e7 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sauka-Spengler, T. & Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nat. Rev. Mol. Cell Biol. 9, 557–568 (2008).

    Article  PubMed  CAS  Google Scholar 

  18. Simoes-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene regulatory recipe. Development 142, 242–257 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Simoes-Costa, M. & Bronner, M. E. Reprogramming of avian neural crest axial identity and cell fate. Science 352, 1570–1573 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Martik, M. L. et al. Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675–678 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Green, S. A., Simoes-Costa, M. & Bronner, M. E. Evolution of vertebrates as viewed from the crest. Nature 520, 474–482 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Furlan, A. & Adameyko, I. Schwann cell precursor: a neural crest cell in disguise? Dev. Biol. 444, S25–S35 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Espinosa-Medina, I. et al. Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest. Proc. Natl Acad. Sci. USA 114, 11980–11985 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Adameyko, I. et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139, 366–379 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Kastriti, M. E. et al. Schwann cell precursors generate the majority of chromaffin cells in zuckerkandl organ and some sympathetic neurons in paraganglia. Front. Mol. Neurosci. 12, 6 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Adameyko, I. et al. Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development 139, 397–410 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Johnston, A. P. W. et al. Dedifferentiated Schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell 19, 433–448 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Johnston, A. P. W. et al. Sox2-mediated regulation of adult neural crest precursors and skin repair. Stem Cell Rep. 1, 38–45 (2013).

    Article  CAS  Google Scholar 

  29. Green, S. A., Uy, B. R. & Bronner, M. E. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature 544, 88–91 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Abitua, P. B., Wagner, E., Navarrete, I. A. & Levine, M. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104–107 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Stolfi, A., Ryan, K., Meinertzhagen, I. A. & Christiaen, L. Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 527, 371–374 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jeffery, W. R., Strickler, A. G. & Yamamoto, Y. Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 431, 696–699 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. Jeffery, W. R. et al. Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest. Dev. Biol. 324, 152–160 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Zhao, D., Chen, S. & Liu, X. Lateral neural borders as precursors of peripheral nervous systems: a comparative view across bilaterians. Dev. Growth Differ. 61, 58–72 (2019).

    Article  PubMed  Google Scholar 

  35. Peter, I. S. & Davidson, E. H. Evolution of gene regulatory networks controlling body plan development. Cell 144, 970–985 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Elsevier, Academic, 2006).

  38. Davidson, E. H. Emerging properties of animal gene regulatory networks. Nature 468, 911–920 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sauka-Spengler, T. & Bronner-Fraser, M. Insights from a sea lamprey into the evolution of neural crest gene regulatory network. Biol. Bull. 214, 303–314 (2008).

    Article  PubMed  Google Scholar 

  40. Hockman, D. et al. A genome-wide assessment of the ancestral neural crest gene regulatory network. Nat. Commun. 10, 4689 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hackland, J. O. S. et al. FGF modulates the axial identity of trunk hPSC-derived neural crest but not the cranial-trunk decision. Stem Cell Rep. 12, 920–933 (2019).

    Article  CAS  Google Scholar 

  42. Gomez, G. A. et al. WNT/β-catenin modulates the axial identity of embryonic stem cell-derived human neural crest. Development 146, dev175604 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Groves, A. K. & LaBonne, C. Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Dev. Biol. 389, 2–12 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Stuhlmiller, T. J. & García-Castro, M. I. FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction. Development 139, 289–300 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. García-Castro, M. I., Marcelle, C. & Bronner-Fraser, M. Ectodermal Wnt function as a neural crest inducer. Science 297, 848–851 (2002).

    Article  PubMed  Google Scholar 

  46. Monsoro-Burq, A. H., Wang, E. & Harland, R. Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev. Cell 8, 167–178 (2005).

    Article  PubMed  CAS  Google Scholar 

  47. Khudyakov, J. & Bronner-Fraser, M. Comprehensive spatiotemporal analysis of early chick neural crest network genes. Dev. Dyn. 238, 716–723 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stuhlmiller, T. J. & García-Castro, M. I. Current perspectives of the signaling pathways directing neural crest induction. Cell. Mol. Life Sci. 69, 3715–3737 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nichane, M., Ren, X., Souopgui, J. & Bellefroid, E. J. Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus. Dev. Biol. 322, 368–380 (2008).

    Article  PubMed  CAS  Google Scholar 

  50. Basch, M. L., Bronner-Fraser, M. & García-Castro, M. I. Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441, 218–222 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. Garnett, A. T., Square, T. A. & Medeiros, D. M. BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development 139, 4220–4231 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Milet, C., Maczkowiak, F., Roche, D. D. & Monsoro-Burq, A. H. Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos. Proc. Natl Acad. Sci. USA 110, 5528–5533 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Milet, C. & Monsoro-Burq, A. H. Neural crest induction at the neural plate border in vertebrates. Dev. Biol. 366, 22–33 (2012).

    Article  PubMed  CAS  Google Scholar 

  54. Plouhinec, J.-L. et al. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Dev. Biol. 386, 461–472 (2014).

    Article  PubMed  CAS  Google Scholar 

  55. de Crozé, N., Maczkowiak, F. & Monsoro-Burq, A. H. Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proc. Natl Acad. Sci. USA 108, 155–160 (2011).

    Article  PubMed  Google Scholar 

  56. Cano, A. et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    Article  PubMed  CAS  Google Scholar 

  57. Ferronha, T. et al. LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells. J. Neurosci. 33, 2773–2783 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Strobl-Mazzulla, P. H. & Bronner, M. E. A PHD12–Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. J. Cell Biol. 198, 999–1010 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rogers, C. D., Saxena, A. & Bronner, M. E. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT. J. Cell Biol. 203, 835–847 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cheung, M. & Briscoe, J. Neural crest development is regulated by the transcription factor Sox9. Development 130, 5681–5693 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. Coles, E. G., Taneyhill, L. A. & Bronner-Fraser, M. A critical role for Cadherin6B in regulating avian neural crest emigration. Dev. Biol. 312, 533–544 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Simoes-Costa, M., Tan-Cabugao, J., Antoshechkin, I., Sauka-Spengler, T. & Bronner, M. E. Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Res. 24, 281–290 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Morrison, J. A. et al. Single-cell transcriptome analysis of avian neural crest migration reveals signatures of invasion and molecular transitions. eLife 6, e28415 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Szabó, A. & Mayor, R. Mechanisms of neural crest migration. Annu. Rev. Genet. 52, 43–63 (2018).

    Article  PubMed  CAS  Google Scholar 

  65. Rocha, M. et al. From head to tail: regionalization of the neural crest. Development 147, dev193888 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kirby, M. L., Turnage, K. L. & Hays, B. M. Characterization of conotruncal malformations following ablation of ‘cardiac’ neural crest. Anat. Rec. 213, 87–93 (1985).

    Article  PubMed  CAS  Google Scholar 

  67. Gandhi, S., Ezin, M. & Bronner, M. E. Reprogramming axial level identity to rescue neural-crest-related congenital heart defects. Dev. Cell 53, 300–315 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Parker, H. J. & Krumlauf, R. A Hox gene regulatory network for hindbrain segmentation. Curr. Top. Dev. Biol. 139, 169–203 (2020).

    Article  PubMed  CAS  Google Scholar 

  69. Sauka-Spengler, T., Meulemans, D., Jones, M. & Bronner-Fraser, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell 13, 405–420 (2007).

    Article  PubMed  CAS  Google Scholar 

  70. Stock, D. W. & Whitt, G. S. Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science 257, 787–789 (1992).

    Article  PubMed  CAS  Google Scholar 

  71. Delarbre, C., Gallut, C., Barriel, V., Janvier, P. & Gachelin, G. Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol. Phylogenet Evol. 22, 184–192 (2002).

    Article  PubMed  CAS  Google Scholar 

  72. Heimberg, A. M., Cowper-Sal-lari, R., Sémon, M., Donoghue, P. C. J. & Peterson, K. J. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc. Natl Acad. Sci. USA 107, 19379–19383 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ota, K. G., Kuraku, S. & Kuratani, S. Hagfish embryology with reference to the evolution of the neural crest. Nature 446, 672–675 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. Shimeld, S. M. & Donoghue, P. C. J. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 139, 2091–2099 (2012).

    Article  PubMed  CAS  Google Scholar 

  75. York, J. R., Yuan, T. & McCauley, D. W. Evolutionary and developmental associations of neural crest and placodes in the vertebrate head: insights from jawless vertebrates. Front. Physiol. 11, 986 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Green, S. A. & Bronner, M. E. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 87, 44–51 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Scerbo, P. & Monsoro-Burq, A. H. The vertebrate-specific VENTX/NANOG gene empowers neural crest with ectomesenchyme potential. Sci. Adv. 6, eaaz1469 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Square, T., Jandzik, D., Cattell, M., Hansen, A. & Medeiros, D. M. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex endothelin signaling. Sci. Rep. 6, 34282 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Square, T. A. et al. Evolution of the endothelin pathway drove neural crest cell diversification. Nature 7, 291–296 (2020).

    Google Scholar 

  80. Lukoseviciute, M. et al. From pioneer to repressor: bimodal foxd3 activity dynamically remodels neural crest regulatory landscape in vivo. Dev. Cell 47, 608–628 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364, eaas9536 (2019).

    Article  PubMed  CAS  Google Scholar 

  82. Stundl, J., Bertucci, P. Y., Lauri, A., Arendt, D. & Bronner, M. E. Evolution of new cell types at the lateral neural border. Curr. Top. Dev. Biol. 141, 173–205 (2021).

    Article  PubMed  Google Scholar 

  83. Horie, R. et al. Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature 560, 228–232 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ivashkin, E. & Adameyko, I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. Evodevo 4, 12–15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Langeland, J. A., Tomsa, J. M., Jackman, W. R. & Kimmel, C. B. An amphioxus snail gene: expression in paraxial mesoderm and neural plate suggests a conserved role in patterning the chordate embryo. Dev. Genes Evol. 208, 569–577 (1998).

    Article  PubMed  CAS  Google Scholar 

  86. Meulemans, D. & Bronner-Fraser, M. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns. Development 129, 4953–4962 (2002).

    Article  PubMed  CAS  Google Scholar 

  87. Yu, J.-K., Meulemans, D., McKeown, S. J. & Bronner-Fraser, M. Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res. 18, 1127–1132 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Slota, L. A., Miranda, E., Peskin, B. & McClay, D. R. Developmental origin of peripheral ciliary band neurons in the sea urchin embryo. Dev. Biol. 459, 72–78 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Häming, D. et al. Expression of sympathetic nervous system genes in lamprey suggests their recruitment for specification of a new vertebrate feature. PLoS ONE 6, e26543 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Jandzik, D. et al. Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue. Nature 518, 534–537 (2015).

    Article  PubMed  CAS  Google Scholar 

  91. Gillis, J. A., Alsema, E. C. & Criswell, K. E. Trunk neural crest origin of dermal denticles in a cartilaginous fish. Proc. Natl Acad. Sci. USA 114, 13200–13205 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Santagati, F. & Rijli, F. M. Cranial neural crest and the building of the vertebrate head. Nat. Rev. Neurosci. 4, 806–818 (2003).

    Article  PubMed  CAS  Google Scholar 

  93. Depew, M. J. & Olsson, L. Symposium on the evolution and development of the vertebrate head. J. Exp. Zool. B Mol. Dev. Evol. 310, 287–293 (2008).

    Article  PubMed  Google Scholar 

  94. Le Douarin, N. The Neural Crest (Cambridge Univ. Press, 1982).

  95. Li, Y.-X. et al. Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function. Dev. Dyn. 226, 540–550 (2003).

    Article  PubMed  Google Scholar 

  96. Sato, M. & Yost, H. J. Cardiac neural crest contributes to cardiomyogenesis in zebrafish. Dev. Biol. 257, 127–139 (2003).

    Article  PubMed  CAS  Google Scholar 

  97. Hunt, P., Ferretti, P., Krumlauf, R. & Thorogood, P. Restoration of normal Hox code and branchial arch morphogenesis after extensive deletion of hindbrain neural crest. Dev. Biol. 168, 584–597 (1995).

    Article  PubMed  CAS  Google Scholar 

  98. Saldivar, J. R., Sechrist, J. W., Krull, C. E., Ruffins, S. & Bronner-Fraser, M. Dorsal hindbrain ablation results in rerouting of neural crest migration and changes in gene expression, but normal hyoid development. Development 124, 2729–2739 (1997).

    Article  PubMed  CAS  Google Scholar 

  99. Trainor, P. A., Ariza-McNaughton, L. & Krumlauf, R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295, 1288–1291 (2002).

    Article  PubMed  CAS  Google Scholar 

  100. Creuzet, S., Couly, G., Vincent, C. & Le Douarin, N. M. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 129, 4301–4313 (2002).

    Article  PubMed  CAS  Google Scholar 

  101. D’Amico-Martel, A. & Noden, D. M. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat. 166, 445–468 (1983).

    Article  PubMed  Google Scholar 

  102. Abitua, P. B. et al. The pre-vertebrate origins of neurogenic placodes. Nature 524, 462–465 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Liu, B. & Satou, Y. Foxg specifies sensory neurons in the anterior neural plate border of the ascidian embryo. Nat. Commun. 10, 4911 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cao, C. et al. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature 571, 349–354 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Stundl for comments and discussion on this manuscript. This work was supported by the US National Institutes of Health (NIH) grant R35NS111564 to M.E.B. M.L.M. was supported by a fellowship from the Helen Hay Whitney Foundation and by NIH grant 1K99HD100587.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Marianne E. Bronner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks I. Adameyko, M. Levine and A. Monsoro-Burq for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chordates

Animals of the phylum Chordata that possess a notochord, dorsal nerve cord, endostyle or thyroid, gill slits and a tail. This phylum includes amphioxus, ascidians and vertebrates.

Synapomorphy

A shared, derived trait of two or more groups that was present in a last common ancestor.

Cranial neural crest

The anterior-most subpopulation of the neural crest that gives rise to a large majority of the craniofacial skeleton, melanocytes and cranial ganglia.

Vagal neural crest

A subpopulation of neural crest cells arising from somites 1–7 that contributes to the enteric nervous system and cardiovascular derivatives.

Trunk neural crest

A subpopulation of neural crest cells that originates from somites 8–28 and forms neurons and glia of the dorsal root ganglia and sympathetic nervous system as well as melanocytes.

Lumbosacral neural crest

The posterior-most subpopulation of the neural crest that gives rise to portions of the enteric and sympathetic nervous systems.

Gnathostomes

Jawed vertebrates that include all vertebrates except cyclostomes.

Cyclostomes

Jawless vertebrates and sister group to the gnathostomes that include hagfish and sea lamprey.

Deuterostomes

Animals of the superphylum Deuterostomia that form their anus before their mouth during development. This superphylum includes animals such as sea urchins, amphioxus, ascidians and all vertebrates.

Urochordates

Animals of the chordate subphylum Urochordata, which includes tunicates (also known as ascidians).

Cephalochordate

An animal of the chordate subphylum Cephalochordata, which includes lancelets (also known as amphioxus).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martik, M.L., Bronner, M.E. Riding the crest to get a head: neural crest evolution in vertebrates. Nat Rev Neurosci 22, 616–626 (2021). https://doi.org/10.1038/s41583-021-00503-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00503-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing