Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LAMTOR5 raises abnormal initiation of O-glycosylation in breast cancer metastasis via modulating GALNT1 activity

Abstract

During malignancy, perturbed O-glycosylation confers global influence on cancer progression. As a hallmark of cancer metastasis, GalNAc-type O-glycosylation initiation is aberrantly raised, but the regulatory mechanism is still mysterious. Here, we show that LAMTOR5 raises abnormal initiation of O-glycosylation in breast cancer metastasis. LAMTOR5 was highly expressed in adenocarcinoma and correlated with Tn antigen, a product of O-glycosylation initiation, in both clinical metastatic breast cancer specimens and secondary metastasis mouse model. LAMTOR5-modulated O-glycosylation initiating enzyme GALNT1 conferred Tn accumulation and predicted poor survival. Mechanistically, LAMTOR5 stimulated transcriptions of GALNT1 through coactivating c-Jun, and triggered dislocation of GALNT1 in the endoplasmic reticulum (ER) via LAMTOR5 dependent-activation of c-Src. This unusual initiation of O-glycosylation resulted in the abundance of Tn modified glycoproteins, such as MUC1 and OPN. Collectively, our findings indicate that LAMTOR5/c-Jun/c-Src axis serves as the upstream regulator of abnormal O-glycosylation initiation and potential therapeutic targets in breast cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LAMTOR5 promotes abnormal initiation of O-glycosylation in breast cancer metastasis.
Fig. 2: LAMTOR5-elevated GALNT1 contributes to abnormal initiation of O-glycosylation and breast cancer cell invasion and migration.
Fig. 3: LAMTOR5 stimulates GALNT1 transcription through coactivating transcription factor c-Jun.
Fig. 4: LAMTOR5 triggers GALNT1/Tn antigen to localize in the ER via promoting expression and activation of c-Src.
Fig. 5: LAMTOR5 increases O-glycosylation initiation of MUC1 and OPN.
Fig. 6: LAMTOR5 promotes breast cancer metastasis through GALNT1-mediated abnormal initiation of O-glycosylation.

Similar content being viewed by others

References

  1. Gill DJ, Tham KM, Chia J, Wang SC, Steentoft C, Clausen H, et al. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc Natl Acad Sci USA. 2013;110:E3152–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ju T, Otto VI, Cummings RD. The Tn antigen-structural simplicity and biological complexity. Angew Chem. 2011;50:1770–91.

    CAS  Google Scholar 

  3. Nguyen AT, Chia J, Ros M, Hui KM, Saltel F, Bard F. Organelle specific O-glycosylation drives MMP14 activation, tumor growth, and metastasis. Cancer Cell. 2017;32:639–53.e636.

    CAS  PubMed  Google Scholar 

  4. Li C, Du Y, Yang Z, He L, Wang Y, Hao L, et al. GALNT1-mediated glycosylation and activation of sonic hedgehog signaling maintains the self-renewal and tumor-initiating capacity of bladder cancer stem cells. Cancer Res. 2016;76:1273–83.

    CAS  PubMed  Google Scholar 

  5. Song KH, Park MS, Nandu TS, Gadad S, Kim SC, Kim MY. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat Commun. 2016;7:13796.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Miwa HE, Gerken TA, Jamison O, Tabak LA. Isoform-specific O-glycosylation of osteopontin and bone sialoprotein by polypeptide N-acetylgalactosaminyltransferase-1. J Biol Chem. 2010;285:1208–19.

    CAS  PubMed  Google Scholar 

  7. Li C, Yang Z, Du Y, Tang H, Chen J, Hu D, et al. BCMab1, a monoclonal antibody against aberrantly glycosylated integrin alpha3beta1, has potent antitumor activity of bladder cancer in vivo. Clin Cancer Res. 2014;20:4001–13.

    CAS  PubMed  Google Scholar 

  8. Park JH, Nishidate T, Kijima K, Ohashi T, Takegawa K, Fujikane T, et al. Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer Res. 2010;70:2759–69.

    CAS  PubMed  Google Scholar 

  9. Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20:332–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kariya Y, Kanno M, Matsumoto-Morita K, Konno M, Yamaguchi Y, Hashimoto Y. Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties. Biochem J. 2014;463:93–102.

    CAS  PubMed  Google Scholar 

  11. Minai-Tehrani A, Chang SH, Park SB, Cho MH. The Oglycosylation mutant osteopontin alters lung cancer cell growth and migration in vitro and in vivo. Int J Mol Med. 2013;32:1137–49.

    CAS  PubMed  Google Scholar 

  12. Rottger S, White J, Wandall HH, Olivo JC, Stark A, Bennett EP, et al. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci. 1998;111:45–60.

    CAS  PubMed  Google Scholar 

  13. Gill DJ, Clausen H, Bard F. Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol. 2011;21:149–58.

    CAS  PubMed  Google Scholar 

  14. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150:1196–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Wang Z, Shi H, Li H, Li L, Fang R, et al. HBXIP and LSD1 scaffolded by lncRNA hotair mediate transcriptional activation by c-Myc. Cancer Res. 2016;76:293–304.

    CAS  PubMed  Google Scholar 

  16. Zhao Y, Li H, Zhang Y, Li L, Fang R, Li Y, et al. Oncoprotein HBXIP modulates abnormal lipid metabolism and growth of breast cancer cells by activating the LXRs/SREBP-1c/FAS signaling cascade. Cancer Res. 2016;76:4696–707.

    CAS  PubMed  Google Scholar 

  17. Yue L, Li L, Liu F, Hu N, Zhang W, Bai X, et al. The oncoprotein HBXIP activates transcriptional coregulatory protein LMO4 via Sp1 to promote proliferation of breast cancer cells. Carcinogenesis. 2013;34:927–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    PubMed  Google Scholar 

  19. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    PubMed  Google Scholar 

  20. Hammond C, Helenius A. Quality control in the secretory pathway. Curr Opin Cell Biol. 1995;7:523–9.

    CAS  PubMed  Google Scholar 

  21. Hofmann BT, Stehr A, Dohrmann T, Gungor C, Herich L, Hiller J, et al. ABO blood group IgM isoagglutinins interact with tumor-associated O-glycan structures in pancreatic cancer. Clin Cancer Res. 2014;20:6117–26.

    CAS  PubMed  Google Scholar 

  22. Korourian S, Siegel E, Kieber-Emmons T, Monzavi-Karbassi B. Expression analysis of carbohydrate antigens in ductal carcinoma in situ of the breast by lectin histochemistry. BMC Cancer. 2008;8:136.

    PubMed  PubMed Central  Google Scholar 

  23. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.

    CAS  PubMed  Google Scholar 

  24. Cummings RD, Darvill AG, Etzler ME, Hahn MG. Glycan-recognizing probes as tools. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., editors. Essentials of glycobiology. NY: Cold Spring Harbor; 2015. p. 611–25.

  25. Li H, Liu Q, Wang Z, Fang R, Shen Y, Cai X, et al. The oncoprotein HBXIP modulates the feedback loop of MDM2/p53 to enhance the growth of breast cancer. J Biol Chem. 2015;290:22649–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003;31:3651–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18:333–4.

    CAS  PubMed  Google Scholar 

  28. Lee TY, Chang WC, Hsu JB, Chang TH, Shien DM. GPMiner: an integrated system for mining combinatorial cis-regulatory elements in mammalian gene group. BMC Genom. 2012;13 Suppl 1:S3.

    Google Scholar 

  29. Gill DJ, Chia J, Senewiratne J, Bard F. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol. 2010;189:843–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ritchie S, Boyd FM, Wong J, Bonham K. Transcription of the human c-Src promoter is dependent on Sp1, a novel pyrimidine binding factor SPy, and can be inhibited by triplex-forming oligonucleotides. J Biol Chem. 2000;275:847–54.

    CAS  PubMed  Google Scholar 

  31. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Remmers N, Anderson JM, Linde EM, DiMaio DJ, Lazenby AJ, Wandall HH, et al. Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res. 2013;19:1981–93.

    CAS  PubMed  Google Scholar 

  33. Laack E, Nikbakht H, Peters A, Kugler C, Jasiewicz Y, Edler L, et al. Lectin histochemistry of resected adenocarcinoma of the lung: helix pomatia agglutinin binding is an independent prognostic factor. Am J Pathol. 2002;160:1001–8.

    PubMed  PubMed Central  Google Scholar 

  34. Desai PR. Immunoreactive T and Tn antigens in malignancy: role in carcinoma diagnosis, prognosis, and immunotherapy. Transfus Med Rev. 2000;14:312–25.

    CAS  PubMed  Google Scholar 

  35. Milde-Langosch K, Schutze D, Oliveira-Ferrer L, Wikman H, Muller V, Lebok P, et al. Relevance of betaGal-betaGalNAc-containing glycans and the enzymes involved in their synthesis for invasion and survival in breast cancer patients. Breast Cancer Res Treat. 2015;151:515–28.

    CAS  PubMed  Google Scholar 

  36. Pangeni RP, Channathodiyil P, Huen DS, Eagles LW, Johal BK, Pasha D, et al. The GALNT9, BNC1 and CCDC8 genes are frequently epigenetically dysregulated in breast tumours that metastasise to the brain. Clin Epigenetics. 2015;7:57.

    PubMed  PubMed Central  Google Scholar 

  37. Singh R, Bandyopadhyay D. MUC1: a target molecule for cancer therapy. Cancer Biol Ther. 2007;6:481–6.

    CAS  PubMed  Google Scholar 

  38. Ooms LM, Binge LC, Davies EM, Rahman P, Conway JR, Gurung R, et al. The inositol polyphosphate 5-phosphatase pipp regulates akt1-dependent breast cancer growth and metastasis. Cancer Cell. 2015;28:155–69.

    CAS  PubMed  Google Scholar 

  39. Hu N, Zhang J, Cui W, Kong G, Zhang S, Yue L, et al. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J Biol Chem. 2011;286:13714–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Baum LG, Derbin K, Perillo NL, Wu T, Pang M, Uittenbogaart C. Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. J Biol Chem. 1996;271:10793–9.

    CAS  PubMed  Google Scholar 

  41. Finlin BS, Crump SM, Satin J, Andres DA. Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proc Natl Acad Sci USA. 2003;100:14469–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Zhao Y, Li H, Li Y, Cai X, Shen Y, et al. The nuclear import of oncoprotein hepatitis B X-interacting protein depends on interacting with c-Fos and phosphorylation of both proteins in breast cancer cells. J Biol Chem. 2013;288:18961–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiu Y, Patwa TH, Xu L, Shedden K, Misek DE, Tuck M, et al. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J Proteome Res. 2008;7:1693–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Seales EC, Jurado GA, Singhal A, Bellis SL. Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene. 2003;22:7137–45.

    CAS  PubMed  Google Scholar 

  45. Berger T, Cheung CC, Elia AJ, Mak TW. Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc Natl Acad Sci USA. 2010;107:2995–3000.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the grants of the National Basic Research Program of China (973 Program nos. 2015CB553905, 2015CB553703), the National Natural Scientific Foundation of China (nos. 81372186, 31670771, 31470756, and 31670769), the Fundamental Research Funds for the Central Universities, Project of Prevention and Treatment of Key Infectious Diseases (no. 2014ZX0002002-005) and Project of Prevention and Control of Key Chronic Non Infectious Diseases (no. 2016YFC130340) to LHY.

Author information

Authors and Affiliations

Authors

Contributions

RPF, WYZ, and LHY designed research and wrote the paper; RPF, FFX, HS, YW, CC, HL, YYZ, and QL performed research; RPF, FFX, HS, YW, CC, WYZ, and LHY analyzed data.

Corresponding author

Correspondence to Lihong Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, R., Xu, F., Shi, H. et al. LAMTOR5 raises abnormal initiation of O-glycosylation in breast cancer metastasis via modulating GALNT1 activity. Oncogene 39, 2290–2304 (2020). https://doi.org/10.1038/s41388-019-1146-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1146-2

This article is cited by

Search

Quick links