Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Growth/differentiation factor-15: prostate cancer suppressor or promoter?

Abstract

Deregulation of expression and function of cytokines belonging to the transforming growth factor-β (TGF-β) family is often associated with various pathologies. For example, this cytokine family has been considered a promising target for cancer therapy. However, the detailed functions of several cytokines from the TGF-β family that could have a role in cancer progression and therapy remain unclear. One of these molecules is growth/differentiation factor-15 (GDF-15), a divergent member of the TGF-β family. This stress-induced cytokine has been proposed to possess immunomodulatory functions and its high expression is often associated with cancer progression, including prostate cancer (PCa). However, studies clearly demonstrating the mechanisms for signal transduction and functions in cell interaction, cancer progression and therapy are still lacking. New GDF-15 roles have recently been identified for modulating osteoclast differentiation and for therapy for PCa bone metastases. Moreover, GDF-15 is as an abundant cytokine in seminal plasma with immunosuppressive properties. We discuss studies that focus on the regulation of GDF-15 expression and its role in tissue homeostasis, repair and the immune response with an emphasis on the role in PCa development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Dranoff G . Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004; 4: 11–22.

    Article  CAS  PubMed  Google Scholar 

  2. Yang L, Moses HL . Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 2008; 68: 9107–9111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA 1997; 94: 11514–11519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bauskin AR, Brown DA, Kuffner T, Johnen H, Luo XW, Hunter M et al. Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer. Cancer Res 2006; 66: 4983–4986.

    Article  CAS  PubMed  Google Scholar 

  5. Baek SJ, Kim KS, Nixon JB, Wilson LC, Eling TE . Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 2001; 59: 901–908.

    Article  CAS  PubMed  Google Scholar 

  6. Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhang HP, Breit SN . MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol 1999; 65: 2–5.

    Article  CAS  PubMed  Google Scholar 

  7. Hromas R, Hufford M, Sutton J, Xu D, Li Y, Lu L . PLAB, a novel placental bone morphogenetic protein. Biochim Biophys Acta 1997; 1354: 40–44.

    Article  CAS  PubMed  Google Scholar 

  8. Yokoyama-Kobayashi M, Saeki M, Sekine S, Kato S . Human cDNA encoding a novel TGF-beta superfamily protein highly expressed in placenta. J Biochem 1997; 122: 622–626.

    Article  CAS  PubMed  Google Scholar 

  9. Bottner M, Laaff M, Schechinger B, Rappold G, Unsicker K, Suter-Crazzolara C . Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1). Gene 1999; 237: 105–111.

    Article  CAS  PubMed  Google Scholar 

  10. Brown DA, Bauskin AR, Fairlie WD, Smith MD, Liu T, Xu N et al. Antibody-based approach to high-volume genotyping for MIC-1 polymorphism. Biotechniques 2002; 33: 118–120, 122, 124 passim.

    Article  CAS  PubMed  Google Scholar 

  11. Hayes VM, Severi G, Southey MC, Padilla EJ, English DR, Hopper JL et al. Macrophage inhibitory cytokine-1 H6D polymorphism, prostate cancer risk, and survival. Cancer Epidemiol Biomarkers Prev 2006; 15: 1223–1225.

    Article  CAS  PubMed  Google Scholar 

  12. Lindmark F, Zheng SL, Wiklund F, Bensen J, Balter KA, Chang B et al. H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer. J Natl Cancer Inst 2004; 96: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  13. Bauskin AR, Zhang HP, Fairlie WD, He XY, Russell PK, Moore AG et al. The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-beta superfamily member, acts as a quality control determinant for correctly folded MIC-1. EMBO J 2000; 19: 2212–2220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brunner AM, Lioubin MN, Marquardt H, Malacko AR, Wang WC, Shapiro RA et al. Site-directed mutagenesis of glycosylation sites in the transforming growth factor-beta 1 (TGF beta 1) and TGF beta 2 (414) precursors and of cysteine residues within mature TGF beta 1: effects on secretion and bioactivity. Mol Endocrinol 1992; 6: 1691–1700.

    CAS  PubMed  Google Scholar 

  15. Bauskin AR, Brown DA, Junankar S, Rasiah KK, Eggleton S, Hunter M et al. The propeptide mediates formation of stromal stores of PROMIC-1: role in determining prostate cancer outcome. Cancer Res 2005; 65: 2330–2336.

    Article  CAS  PubMed  Google Scholar 

  16. Abd El-Aziz SH, Endo Y, Miyamaori H, Takino T, Sato H . Cleavage of growth differentiation factor 15 (GDF15) by membrane type 1-matrix metalloproteinase abrogates GDF15-mediated suppression of tumor cell growth. Cancer Sci 2007; 98: 1330–1335.

    Article  CAS  PubMed  Google Scholar 

  17. Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation 2010; 122: 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  18. Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E . Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: the Rancho Bernardo study. Circulation 2011; 123: 2101–2110.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kempf T, Horn-Wichmann R, Brabant G, Peter T, Allhoff T, Klein G et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem 2007; 53: 284–291.

    Article  CAS  PubMed  Google Scholar 

  20. Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol 2007; 50: 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  21. Kempf T, Wollert KC . Growth-differentiation factor-15 in heart failure. Heart Fail Clin 2009; 5: 537–547.

    Article  PubMed  Google Scholar 

  22. Wang F, Guo Y, Yu H, Zheng L, Mi L, Gao W . Growth differentiation factor 15 in different stages of heart failure: potential screening implications. Biomarkers 2010; 15: 671–676.

    Article  CAS  PubMed  Google Scholar 

  23. Wiklund FE, Bennet AM, Magnusson PK, Eriksson UK, Lindmark F, Wu L et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell 2010; 9: 1057–1064.

    Article  CAS  PubMed  Google Scholar 

  24. Dinh W, Futh R, Lankisch M, Hess G, Zdunek D, Scheffold T et al. Growth-differentiation factor-15: a novel biomarker in patients with diastolic dysfunction? Arq Bras Cardiol 2011; 97: 65–75.

    Article  CAS  PubMed  Google Scholar 

  25. Stahrenberg R, Edelmann F, Mende M, Kockskamper A, Dungen HD, Luers C et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. Eur J Heart Fail 2010; 12: 1309–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 2011; 17: 581–588.

    Article  CAS  PubMed  Google Scholar 

  27. de Jager SC, Bermudez B, Bot I, Koenen RR, Bot M, Kavelaars A et al. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J Exp Med 2011; 208: 217–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song H, Yin D, Liu Z . GDF-15 promotes angiogenesis through modulating p53/HIF-1α signaling pathway in hypoxic human umbilical vein endothelial cells. Mol Biol Rep 2011; e-pub ahead of print 20 July 2011.

  29. Brown DA, Moore J, Johnen H, Smeets TJ, Bauskin AR, Kuffner T et al. Serum macrophage inhibitory cytokine 1 in rheumatoid arthritis: a potential marker of erosive joint destruction. Arthritis Rheum 2007; 56: 753–764.

    Article  CAS  PubMed  Google Scholar 

  30. Tamary H, Shalev H, Perez-Avraham G, Zoldan M, Levi I, Swinkels DW et al. Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I. Blood 2008; 112: 5241–5244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Theurl I, Finkenstedt A, Schroll A, Nairz M, Sonnweber T, Bellmann-Weiler R et al. Growth differentiation factor 15 in anaemia of chronic disease, iron deficiency anaemia and mixed type anaemia. Br J Haematol 2009; 148: 449–455.

    Article  PubMed  Google Scholar 

  32. Dostalova I, Roubicek T, Bartlova M, Mraz M, Lacinova Z, Haluzikova D et al. Increased serum concentrations of macrophage inhibitory cytokine-1 in patients with obesity and type 2 diabetes mellitus: the influence of very low calorie diet. Eur J Endocrinol 2009; 161: 397–404.

    Article  CAS  PubMed  Google Scholar 

  33. Sugulle M, Dechend R, Herse F, Weedon-Fekjaer MS, Johnsen GM, Brosnihan KB et al. Circulating and placental growth-differentiation factor 15 in preeclampsia and in pregnancy complicated by diabetes mellitus. Hypertension 2009; 54: 106–112.

    Article  CAS  PubMed  Google Scholar 

  34. Tanno T, Noel P, Miller JL . Growth differentiation factor 15 in erythroid health and disease. Curr Opin Hematol 2011; 17: 184–190.

    Google Scholar 

  35. Zimmers TA, Jin X, Hsiao EC, McGrath SA, Esquela AF, Koniaris LG . Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 2005; 23: 543–548.

    CAS  PubMed  Google Scholar 

  36. Duong Van Huyen JP, Cheval L, Bloch-Faure M, Belair MF, Heudes D, Bruneval P et al. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J Am Soc Nephrol 2008; 19: 1965–1974.

    Article  CAS  PubMed  Google Scholar 

  37. Strelau J, Strzelczyk A, Rusu P, Bendner G, Wiese S, Diella F et al. Progressive postnatal motoneuron loss in mice lacking GDF-15. J Neurosci 2009; 29: 13640–13648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schindowski K, von Bohlen und Halbach O, Strelau J, Ridder DA, Herrmann O, Schober A et al. Regulation of GDF-15, a distant TGF-beta superfamily member, in a mouse model of cerebral ischemia. Cell Tissue Res 2011; 343: 399–409.

    Article  CAS  PubMed  Google Scholar 

  39. Marjono AB, Brown DA, Horton KE, Wallace EM, Breit SN, Manuelpillai U . Macrophage inhibitory cytokine-1 in gestational tissues and maternal serum in normal and pre-eclamptic pregnancy. Placenta 2003; 24: 100–106.

    Article  CAS  PubMed  Google Scholar 

  40. Tong S, Marjono B, Brown DA, Mulvey S, Breit SN, Manuelpillai U et al. Serum concentrations of macrophage inhibitory cytokine 1 (MIC 1) as a predictor of miscarriage. Lancet 2004; 363: 129–130.

    Article  CAS  PubMed  Google Scholar 

  41. Wallace EM, Marjono B, Brown DA, Crossley J, Tong S, Aitken D et al. Maternal serum and amniotic fluid levels of macrophage inhibitory cytokine 1 in Down syndrome and chromosomally normal pregnancies. Prenat Diagn 2004; 24: 224–226.

    Article  CAS  PubMed  Google Scholar 

  42. Soucek K, Slabakova E, Ovesna P, Malenovska A, Kozubik A, Hampl A . Growth/differentiation factor-15 is an abundant cytokine in human seminal plasma. Hum Reprod 2010; 25: 2962–2971.

    Article  CAS  PubMed  Google Scholar 

  43. Dostalova I, Kavalkova P, Papezova H, Domluvilova D, Zikan V, Haluzik M . Association of macrophage inhibitory cytokine-1 with nutritional status, body composition and bone mineral density in patients with anorexia nervosa: the influence of partial realimentation. Nutr Metab (Lond) 2010; 7: 34.

    Article  CAS  Google Scholar 

  44. Jatoi A . Weight loss in patients with advanced cancer: effects, causes, and potential management. Curr Opin Support Palliat Care 2008; 2: 45–48.

    Article  PubMed  Google Scholar 

  45. Vila G, Riedl M, Anderwald C, Resl M, Handisurya A, Clodi M et al. The relationship between insulin resistance and the cardiovascular biomarker growth differentiation factor-15 in obese patients. Clin Chem 2011; 57: 309–316.

    Article  CAS  PubMed  Google Scholar 

  46. Wakchoure S, Swain TM, Hentunen TA, Bauskin AR, Brown DA, Breit SN et al. Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate 2009; 69: 652–661.

    Article  CAS  PubMed  Google Scholar 

  47. Johnen H, Lin S, Kuffner T, Brown DA, Tsai VW, Bauskin AR et al. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med 2007; 13: 1333–1340.

    Article  CAS  PubMed  Google Scholar 

  48. Ding Q, Mracek T, Gonzalez-Muniesa P, Kos K, Wilding J, Trayhurn P et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology 2009; 150: 1688–1696.

    Article  CAS  PubMed  Google Scholar 

  49. Kim JH, Kim KY, Jeon JH, Lee SH, Hwang JE, Lee JH et al. Adipocyte culture medium stimulates production of macrophage inhibitory cytokine 1 in MDA-MB-231 cells. Cancer Lett 2008; 261: 253–262.

    Article  CAS  PubMed  Google Scholar 

  50. Bock AJ, Stavnes HT, Kempf T, Trope CG, Berner A, Davidson B et al. Expression and clinical role of growth differentiation factor-15 in ovarian carcinoma effusions. Int J Gynecol Cancer 2010; 20: 1448–1455.

    PubMed  Google Scholar 

  51. Wong J, Li PX, Klamut HJ . A novel p53 transcriptional repressor element (p53TRE) and the asymmetrical contribution of two p53 binding sites modulate the response of the placental transforming growth factor-beta promoter to p53. J Biol Chem 2002; 277: 26699–26707.

    Article  CAS  PubMed  Google Scholar 

  52. Baek SJ, Kim JS, Moore SM, Lee SH, Martinez J, Eling TE . Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol Pharmacol 2005; 67: 356–364.

    Article  CAS  PubMed  Google Scholar 

  53. Yang H, Filipovic Z, Brown D, Breit SN, Vassilev LT . Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther 2003; 2: 1023–1029.

    CAS  PubMed  Google Scholar 

  54. Baek SJ, Wilson LC, Lee CH, Eling TE . Dual function of nonsteroidal anti-inflammatory drugs (NSAIDs): inhibition of cyclooxygenase and induction of NSAID-activated gene. J Pharmacol Exp Ther 2002; 301: 1126–1131.

    Article  CAS  PubMed  Google Scholar 

  55. Lee SH, Krisanapun C, Baek SJ . NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 2010; 31: 719–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yoshioka H, Kamitani H, Watanabe T, Eling TE . Nonsteroidal anti-inflammatory drug-activated gene (NAG-1/GDF15) expression is increased by the histone deacetylase inhibitor trichostatin A. J Biol Chem 2008; 283: 33129–33137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lincova E, Hampl A, Pernicova Z, Starsichova A, Krcmar P, Machala M et al. Multiple defects in negative regulation of the PKB/Akt pathway sensitise human cancer cells to the antiproliferative effect of non-steroidal anti-inflammatory drugs. Biochem Pharmacol 2009; 78: 561–572.

    Article  CAS  PubMed  Google Scholar 

  58. Zimmers TA, Gutierrez JC, Koniaris LG . Loss of GDF-15 abolishes sulindac chemoprevention in the ApcMin/+ mouse model of intestinal cancer. J Cancer Res Clin Oncol 2010; 136: 571–576.

    Article  CAS  PubMed  Google Scholar 

  59. Kim KS, Rhee KH, Yoon JH, Lee JG, Lee JH, Yoo JB . Ginkgo biloba extract (EGb 761) induces apoptosis by the activation of caspase-3 in oral cavity cancer cells. Oral Oncol 2005; 41: 383–389.

    Article  PubMed  Google Scholar 

  60. Kim JS, Baek SJ, Sali T, Eling TE . The conventional nonsteroidal anti-inflammatory drug sulindac sulfide arrests ovarian cancer cell growth via the expression of NAG-1/MIC-1/GDF-15. Mol Cancer Ther 2005; 4: 487–493.

    Article  CAS  PubMed  Google Scholar 

  61. Bottone Jr FG, Baek SJ, Nixon JB, Eling TE . Diallyl disulfide (DADS) induces the antitumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT 116 cells. J Nutr 2002; 132: 773–778.

    Article  CAS  PubMed  Google Scholar 

  62. Kelly JA, Lucia MS, Lambert JR . p53 controls prostate-derived factor/macrophage inhibitory cytokine/NSAID-activated gene expression in response to cell density, DNA damage and hypoxia through diverse mechanisms. Cancer Lett 2009; 277: 38–47.

    Article  CAS  PubMed  Google Scholar 

  63. Auyeung KK, Cho CH, Ko JK . A novel anticancer effect of astragalus saponins: Transcriptional activation of NSAID-activated gene. Int J Cancer 2009; 125: 1082–1091.

    Article  CAS  PubMed  Google Scholar 

  64. Schlittenhardt D, Schober A, Strelau J, Bonaterra GA, Schmiedt W, Unsicker K et al. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res 2004; 318: 325–333.

    Article  CAS  PubMed  Google Scholar 

  65. Baek KE, Yoon SR, Kim JT, Kim KS, Kang SH, Yang Y et al. Upregulation and secretion of macrophage inhibitory cytokine-1 (MIC-1) in gastric cancers. Clin Chim Acta 2009; 401: 128–133.

    Article  CAS  PubMed  Google Scholar 

  66. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 2008; 1: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wollmann W, Goodman ML, Bhat-Nakshatri P, Kishimoto H, Goulet Jr RJ, Mehrotra S et al. The macrophage inhibitory cytokine integrates AKT/PKB and MAP kinase signaling pathways in breast cancer cells. Carcinogenesis 2005; 26: 900–907.

    Article  CAS  PubMed  Google Scholar 

  68. Kim KK, Lee JJ, Yang Y, You KH, Lee JH . Macrophage inhibitory cytokine-1 activates AKT and ERK-1/2 via the transactivation of ErbB2 in human breast and gastric cancer cells. Carcinogenesis 2008; 29: 704–712.

    Article  CAS  PubMed  Google Scholar 

  69. Burris 3rd HA . Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist 2004; 9 (Suppl 3): 10–15.

    Article  CAS  PubMed  Google Scholar 

  70. Si Y, Liu X, Cheng M, Wang M, Gong Q, Yang Y et al. Growth differentiation factor 15 is induced by hepatitis C virus infection and regulates hepatocellular carcinoma-related genes. PLoS One 2011; 6: e19967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boyle GM, Pedley J, Martyn AC, Banducci KJ, Strutton GM, Brown DA et al. Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J Invest Dermatol 2009; 129: 383–391.

    Article  CAS  PubMed  Google Scholar 

  72. Huh SJ, Chung CY, Sharma A, Robertson GP . Macrophage inhibitory cytokine-1 regulates melanoma vascular development. Am J Pathol 2010; 176: 2948–2957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Albertoni M, Shaw PH, Nozaki M, Godard S, Tenan M, Hamou MF et al. Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1. Oncogene 2002; 21: 4212–4219.

    Article  CAS  PubMed  Google Scholar 

  74. Roth P, Junker M, Tritschler I, Mittelbronn M, Dombrowski Y, Breit SN et al. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res 2010; 16: 3851–3859.

    Article  CAS  PubMed  Google Scholar 

  75. Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A et al. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 2004; 64: 7596–7603.

    Article  CAS  PubMed  Google Scholar 

  76. Senapati S, Rachagani S, Chaudhary K, Johansson SL, Singh RK, Batra SK . Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate cancer cells through the FAK-RhoA signaling pathway. Oncogene 2010; 29: 1293–1302.

    Article  CAS  PubMed  Google Scholar 

  77. Ostroukhova M, Qi Z, Oriss TB, Dixon-McCarthy B, Ray P, Ray A . Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest 2006; 116: 996–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Catalona WJ, Partin AW, Slawin KM, Brawer MK, Flanigan RC, Patel A et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 1998; 279: 1542–1547.

    Article  CAS  PubMed  Google Scholar 

  79. Brown DA, Stephan C, Ward RL, Law M, Hunter M, Bauskin AR et al. Measurement of serum levels of macrophage inhibitory cytokine 1 combined with prostate-specific antigen improves prostate cancer diagnosis. Clin Cancer Res 2006; 12: 89–96.

    Article  CAS  PubMed  Google Scholar 

  80. Nakamura T, Scorilas A, Stephan C, Yousef GM, Kristiansen G, Jung K et al. Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues. Br J Cancer 2003; 88: 1101–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Welsh JB, Sapinoso LM, Kern SG, Brown DA, Liu T, Bauskin AR et al. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci USA 2003; 100: 3410–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kramer G, Marberger M . Could inflammation be a key component in the progression of benign prostatic hyperplasia? Curr Opin Urol 2006; 16: 25–29.

    PubMed  Google Scholar 

  83. Kramer G, Mitteregger D, Marberger M . Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol 2007; 51: 1202–1216.

    Article  CAS  PubMed  Google Scholar 

  84. Taniguchi S, Taoka R, Inui M, Sugimoto M, Kakehi Y . Influence of inflammation and aging on macrophage inhibitory cytokine-1 gene expression in rat ventral prostate. Urology 2009; 73: 410–414.

    Article  PubMed  Google Scholar 

  85. Taoka R, Tsukuda F, Ishikawa M, Haba R, Kakehi Y . Association of prostatic inflammation with down-regulation of macrophage inhibitory cytokine-1 gene in symptomatic benign prostatic hyperplasia. J Urol 2004; 171 (6 Pt 1): 2330–2335.

    Article  CAS  PubMed  Google Scholar 

  86. Brown DA, Lindmark F, Stattin P, Balter K, Adami HO, Zheng SL et al. Macrophage inhibitory cytokine 1: a new prognostic marker in prostate cancer. Clin Cancer Res 2009; 15: 6658–6664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Noorali S, Kurita T, Woolcock B, de Algara TR, Lo M, Paralkar V et al. Dynamics of expression of growth differentiation factor 15 in normal and PIN development in the mouse. Differentiation 2007; 75: 325–336.

    Article  CAS  PubMed  Google Scholar 

  88. Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 1998; 78: i–xv.

    CAS  PubMed  Google Scholar 

  89. Cheng I, Krumroy LM, Plummer SJ, Casey G, Witte JS . MIC1 and IL1RN genetic variation and advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2007; 16: 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  90. Wang X, Chrysovergis K, Bienstock RJ, Shim M, Eling TE . The H6D variant of NAG-1/GDF15 inhibits prostate xenograft growth in vivo. Prostate 2011; e-pub ahead of print 1 August 2011.

  91. Galsky MD, Vogelzang NJ . Docetaxel-based combination therapy for castration-resistant prostate cancer. Annals Oncol 2010; 21: 2135–2144.

    Article  CAS  Google Scholar 

  92. Zhao L, Lee BY, Brown DA, Molloy MP, Marx GM, Pavlakis N et al. Identification of candidate biomarkers of therapeutic response to docetaxel by proteomic profiling. Cancer Res 2009; 69: 7696–7703.

    Article  CAS  PubMed  Google Scholar 

  93. Huang CY, Beer TM, Higano CS, True LD, Vessella R, Lange PH et al. Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin Cancer Res 2007; 13: 5825–5833.

    Article  CAS  PubMed  Google Scholar 

  94. Chen S-J, Karan D, Johansson SL, Lin F-F, Zeckser J, Singh AP et al. Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells. Prostate 2007; 67: 557–571.

    Article  CAS  PubMed  Google Scholar 

  95. Karan D, Chen S-J, Johansson SL, Singh AP, Paralkar VM, Lin M-F et al. Dysregulated expression of MIC-1/PDF in human prostate tumor cells. Biochem and Biophys Res Commun 2003; 305: 598–604.

    Article  CAS  Google Scholar 

  96. Cheng JC, Chang HM, Leung PC . Wild-Type p53 attenuates cancer cell motility by inducing growth differentiation factor-15 expression. Endocrinology 2011; 152: 2987–2995.

    Article  CAS  PubMed  Google Scholar 

  97. Vanhara P, Lincova E, Kozubik A, Jurdic P, Soucek K, Smarda J . Growth/differentiation factor-15 inhibits differentiation into osteoclasts--a novel factor involved in control of osteoclast differentiation. Differentiation 2009; 78: 213–222.

    Article  CAS  PubMed  Google Scholar 

  98. Lambert JR, Kelly JA, Shim M, Huffer WE, Nordeen SK, Baek SJ et al. Prostate derived factor in human prostate cancer cells: gene induction by vitamin D via a p53-dependent mechanism and inhibition of prostate cancer cell growth. J Cell Physiol 2006; 208: 566–574.

    Article  CAS  PubMed  Google Scholar 

  99. Wynne S, Djakiew D . NSAID inhibition of prostate cancer cell migration is mediated by Nag-1 induction via the p38 MAPK-p75(NTR) pathway. Mol Cancer Res 2010; 8: 1656–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Massague J . TGFbeta in Cancer. Cell 2008; 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, Skotheim RI et al. Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res 2010; 16: 5842–5851.

    Article  CAS  PubMed  Google Scholar 

  102. Park YJ, Lee H, Lee JH . Macrophage inhibitory cytokine-1 transactivates ErbB family receptors via the activation of Src in SK-BR-3 human breast cancer cells. BMB Rep 43: 91–96.

  103. Brown DA, Ward RL, Buckhaults P, Liu T, Romans KE, Hawkins NJ et al. MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clin Cancer Res 2003; 9: 2642–2650.

    CAS  PubMed  Google Scholar 

  104. Kim IY, Park SY, Kang Y, Thapa D, Choi HG, Kim JA . Role of nonsteroidal anti-inflammatory drug-activated gene-1 in docetaxel-induced cell death of human colorectal cancer cells with different p53 status. Arch Pharm Res 2011; 34: 323–330.

    Article  CAS  PubMed  Google Scholar 

  105. Shnaper S, Desbaillets I, Brown DA, Murat A, Migliavacca E, Schluep M et al. Elevated levels of MIC-1/GDF15 in the cerebrospinal fluid of patients are associated with glioblastoma and worse outcome. Int J Cancer 2009; 125: 2624–2630.

    Article  CAS  PubMed  Google Scholar 

  106. Lin TY, Chang JT, Wang HM, Chan SH, Chiu CC, Lin CY et al. Proteomics of the radioresistant phenotype in head-and-neck cancer: Gp96 as a novel prediction marker and sensitizing target for radiotherapy. Int J Radiat Oncol Biol Phys 2010; 78: 246–256.

    Article  CAS  PubMed  Google Scholar 

  107. Skipworth RJ, Deans DA, Tan BH, Sangster K, Paterson-Brown S, Brown DA et al. Plasma MIC-1 correlates with systemic inflammation but is not an independent determinant of nutritional status or survival in oesophago-gastric cancer. Br J Cancer 2010; 102: 665–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Staff AC, Bock AJ, Becker C, Kempf T, Wollert KC, Davidson B . Growth differentiation factor-15 as a prognostic biomarker in ovarian cancer. Gynecol Oncol 2010; 118: 237–243.

    Article  CAS  PubMed  Google Scholar 

  109. Koopmann J, Buckhaults P, Brown DA, Zahurak ML, Sato N, Fukushima N et al. Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res 2004; 10: 2386–2392.

    Article  CAS  PubMed  Google Scholar 

  110. Koopmann J, Rosenzweig CN, Zhang Z, Canto MI, Brown DA, Hunter M et al. Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clin Cancer Res 2006; 12: 442–446.

    Article  CAS  PubMed  Google Scholar 

  111. Selander KS, Brown DA, Sequeiros GB, Hunter M, Desmond R, Parpala T et al. Serum macrophage inhibitory cytokine-1 concentrations correlate with the presence of prostate cancer bone metastases. Cancer Epidemiol Biomarkers Prev 2007; 16: 532–537.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants IGA MZD 9600-4/2008 and IGA MZD 9956-4/2008, Grant number MSM0021622430 from the Ministry of Education, Youth and Sports of the Czech Republic and by the project FNUSA-ICRC (no. CZ.1.05/1.1.00/02.0123) from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Souček.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaňhara, P., Hampl, A., Kozubík, A. et al. Growth/differentiation factor-15: prostate cancer suppressor or promoter?. Prostate Cancer Prostatic Dis 15, 320–328 (2012). https://doi.org/10.1038/pcan.2012.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2012.6

Keywords

This article is cited by

Search

Quick links