Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Playing polo during mitosis: PLK1 takes the lead

Abstract

Polo-like kinase 1 (PLK1), the prototypical member of the polo-like family of serine/threonine kinases, is a pivotal regulator of mitosis and cytokinesis in eukaryotes. Many layers of regulation have evolved to target PLK1 to different subcellular structures and to its various mitotic substrates in line with its numerous functions during mitosis. Collective work is starting to illuminate an important set of substrates for PLK1: the mitotic kinases that together ensure the fidelity of the cell division process. Amongst these, recent developments argue that PLK1 regulates the activity of the histone kinases Aurora B and Haspin to define centromere identity, of MPS1 to initiate spindle checkpoint signaling, and of BUB1 and its pseudokinase paralog BUBR1 to coordinate spindle checkpoint activation and inactivation. Here, we review the recent work describing the regulation of these kinases by PLK1. We highlight common themes throughout and argue that a major mitotic function of PLK1 is as a master regulator of these key kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fisher D, Krasinska L, Coudreuse D, Novák B . Phosphorylation network dynamics in the control of cell cycle transitions. J Cell Sci 2012; 125: 4703–4711.

    Article  CAS  PubMed  Google Scholar 

  2. Novak B, Kapuy O, Domingo-Sananes MR, Tyson JJ . Regulated protein kinases and phosphatases in cell cycle decisions. Curr Opin Cell Biol 2010; 22: 801–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hégarat N, Rata S, Hochegger H . Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. BioEssays 2016; 38: 627–643.

    Article  PubMed  Google Scholar 

  4. Archambault V, Lepine G, Kachaner D . Understanding the Polo Kinase machine. Oncogene 2015; 34: 4799–4807.

    Article  CAS  PubMed  Google Scholar 

  5. Schmucker S, Sumara I . Molecular dynamics of PLK1 during mitosis. Mol Cell Oncol 2014; 1: e954507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zitouni S, Nabais C, Jana S, Guerrero A, Bettencourt-Dias M . Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15: 433–452.

    Article  CAS  PubMed  Google Scholar 

  7. de Cárcer G, Manning G, Malumbres M . From Plk1 to Plk5. Cell Cycle 2011; 10: 2255–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Archambault V, D'Avino PP, Deery MJ, Lilley KS, Glover DM . Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev 2008; 22: 2707–2720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. García-Alvarez B, de Cárcer G, Ibañez S, Bragado-Nilsson E, Montoya G . Molecular and structural basis of polo-like kinase 1 substrate recognition: implications in centrosomal localization. Proc Natl Acad Sci USA 2007; 104: 3107–3112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seki A, Coppinger JA, Jang C-YY, Yates JR, Fang G . Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008; 320: 1655–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Archambault V, Glover DM . Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 2009; 10: 265–275.

    Article  CAS  PubMed  Google Scholar 

  12. Petronczki M, Lénárt P, Peters J-MM . Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev Cell 2008; 14: 646–659.

    Article  CAS  PubMed  Google Scholar 

  13. Strebhardt K . Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 2010; 9: 643–660.

    Article  CAS  PubMed  Google Scholar 

  14. Etemad B, Kops G . Attachment issues: kinetochore transformations and spindle checkpoint silencing. Curr Opin Cell Biol 2016; 39: 101–108.

    Article  CAS  PubMed  Google Scholar 

  15. Musacchio A . The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 2015; 25: 18.

    Article  CAS  Google Scholar 

  16. Lera RF, Potts GK, Suzuki A, Johnson JM, Salmon ED, Coon JJ et al. Decoding Polo-like kinase 1 signaling along the kinetochore-centromere axis. Nat Chem Biol 2016; 12: 411–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu D, Davydenko O, Lampson MA . Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. J Cell Biol 2012; 198: 491–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Honda R, Körner R, Nigg EA . Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 2003; 14: 3325–3341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klein UR, Nigg EA, Gruneberg U . Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of borealin, survivin, and the N-terminal domain of INCENP. Mol Biol Cell 2006; 17: 2547–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vader G, Kauw JJ, Medema RHH, Lens SM . Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep 2006; 7: 85–92.

    Article  CAS  PubMed  Google Scholar 

  21. Carmena M, Wheelock M, Funabiki H, Earnshaw WC . The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 2012; 13: 789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitagawa M, Lee SH . The chromosomal passenger complex (CPC) as a key orchestrator of orderly mitotic exit and cytokinesis. Front Cell Dev Biol 2015; 3: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van der Horst A, Lens SM . Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 2014; 123: 25–42.

    Article  CAS  PubMed  Google Scholar 

  24. Carmena M, Earnshaw WC, Glover DM . The dawn of aurora kinase research: from fly genetics to the clinic. Front Cell Dev Biol 2015; 3: 73.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Krenn V, Musacchio A . The aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front Oncol 2015; 5: 225.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Raab M, Krämer A, Hehlgans S, Sanhaji M, Kurunci-Csacsko E, Dötsch C et al. Mitotic arrest and slippage induced by pharmacological inhibition of Polo-like kinase 1. Mol Oncol 2015; 9: 140–154.

    Article  CAS  PubMed  Google Scholar 

  27. O'Connor A, Maffini S, Rainey MD, Kaczmarczyk A, Gaboriau D, Musacchio A et al. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open 2015; 5: 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu Y, Yao PY, Wang W, Wang D, Wang Z, Zhang L et al. Aurora B kinase activation requires survivin priming phosphorylation by PLK1. J Mol Cell Biol 2011; 3: 260–267.

    Article  CAS  PubMed  Google Scholar 

  29. Salimian KJ, Ballister ER, Smoak EM, Wood S, Panchenko T, Lampson MA et al. Feedback control in sensing chromosome biorientation by the Aurora B kinase. Curr Biol 2011; 21: 1158–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ciceri P, Muller S, O'Mahony A, Fedorov O, Filippakopoulos P, Hunt JP et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol 2014; 10: 305–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ember SW, Zhu JY, Olesen SH, Martin MP, Becker A, Berndt N et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem Biol 2014; 9: 1160–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burkard ME, Santamaria A, Jallepalli PV . Enabling and disabling polo-like kinase 1 inhibition through chemical genetics. ACS Chem Biol 2012; 7: 978–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carmena M, Lombardia MO, Ogawa H, Earnshaw WC . Polo kinase regulates the localization and activity of the chromosomal passenger complex in meiosis and mitosis in Drosophila melanogaster. Open Biol 2014; 4: 140162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moutinho-Santos T, Conde C, Sunkel CE . POLO ensures chromosome bi-orientation by preventing and correcting erroneous chromosome-spindle attachments. J Cell Sci 2012; 125: 576–583.

    Article  CAS  PubMed  Google Scholar 

  35. von Schubert C, Cubizolles F, Bracher JM, Sliedrecht T, Kops GJ, Nigg EA . Plk1 and Mps1 cooperatively regulate the spindle assembly checkpoint in human cells. Cell Rep 2015; 12: 66–78.

    Article  CAS  PubMed  Google Scholar 

  36. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA . Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 2011; 4: rs5.

    Article  CAS  PubMed  Google Scholar 

  37. Santamaria A, Wang B, Elowe S, Malik R, Zhang F, Bauer M et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 2011; 10: 004457.

    Article  CAS  PubMed  Google Scholar 

  38. Foley EA, Maldonado M, Kapoor TM . Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 2011; 13: 1265–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR et al. A PP1-PP2A phosphatase relay controls mitotic progression. Nature 2015; 517: 94–98.

    Article  CAS  PubMed  Google Scholar 

  40. Nijenhuis W, Vallardi G, Teixeira A, Kops GJ, Saurin AT . Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol 2014; 16: 1257–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu P, Raetz EA, Kitagawa M, Virshup DM, Lee SH . BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression. Biol Open 2013; 2: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Asteriti IA, De Mattia F, Guarguaglini G . Cross-talk between AURKA and Plk1 in mitotic entry and spindle assembly. Front Oncol 2015; 5: 283.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carmena M, Pinson X, Platani M, Salloum Z, Xu Z, Clark A et al. The chromosomal passenger complex activates Polo kinase at centromeres. PLoS Biol 2012; 10: e1001250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 2008; 10: 1076–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 2005; 7: 126–136.

    Article  CAS  PubMed  Google Scholar 

  46. Thiru P, Kern DM, McKinley KL, Monda JK, Rago F, Su KC et al. Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Mol Biol Cell 2014; 25: 1983–1994.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 2005; 25: 10875–10894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wonsey DR, Follettie MT . Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 2005; 65: 5181–5189.

    Article  CAS  PubMed  Google Scholar 

  49. Goto H, Kiyono T, Tomono Y, Kawajiri A, Urano T, Furukawa K et al. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nat Cell Biol 2006; 8: 180–187.

    Article  CAS  PubMed  Google Scholar 

  50. Colnaghi R, Wheatley SP . Liaisons between survivin and Plk1 during cell division and cell death. J Biol Chem 2010; 285: 22592–22604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Higgins JM . Haspin: a newly discovered regulator of mitotic chromosome behavior. Chromosoma 2010; 119: 137–147.

    Article  PubMed  Google Scholar 

  52. Yamagishi Y, Sakuno T, Goto Y, Watanabe Y . Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 2014; 38: 185–200.

    Article  CAS  PubMed  Google Scholar 

  53. Dai J, Sullivan BA, Higgins JM . Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 2006; 11: 741–750.

    Article  CAS  PubMed  Google Scholar 

  54. Dai J, Kateneva AV, Higgins JM . Studies of haspin-depleted cells reveal that spindle-pole integrity in mitosis requires chromosome cohesion. J Cell Sci 2009; 122: 4168–4176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT et al. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 2010; 330: 231–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamagishi Y, Honda T, Tanno Y, Watanabe Y . Two histone marks establish the inner centromere and chromosome bi-orientation. Science 2010; 330: 239–243.

    Article  CAS  PubMed  Google Scholar 

  57. Wang F, Ulyanova NP, van der Waal MS, Patnaik D, Lens SM, Higgins JM . A positive feedback loop involving Haspin and Aurora B promotes CPC accumulation at centromeres in mitosis. Curr Biol 2011; 21: 1061–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou L, Tian X, Zhu C, Wang F, Higgins JM . Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis. EMBO Rep 2014; 15: 273–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Moutinho-Santos T, Maiato H . Plk1 puts a (Has)pin on the mitotic histone code. EMBO Rep 2014; 15: 203–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ghenoiu C, Wheelock MS, Funabiki H . Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis. Mol Cell 2013; 52: 734–745.

    Article  CAS  PubMed  Google Scholar 

  61. Eswaran J, Patnaik D, Filippakopoulos P, Wang F, Stein RL, Murray JW et al. Structure and functional characterization of the atypical human kinase haspin. Proc Natl Acad Sci USA 2009; 106: 20198–20203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Villa F, Capasso P, Tortorici M, Forneris F, de Marco A, Mattevi A et al. Crystal structure of the catalytic domain of Haspin, an atypical kinase implicated in chromatin organization. Proc Natl Acad Sci USA 2009; 106: 20204–20209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoshida MM, Ting L, Gygi SP, Azuma Y . SUMOylation of DNA topoisomerase IIalpha regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis. J Cell Biol 2016; 213: 665–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Edgerton H, Johansson M, Keifenheim D, Mukherjee S, Chacon JM, Bachant J et al. A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis. J Cell Biol 2016; 213: 651–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sumara I, Vorlaufer E, Stukenberg PT, Kelm O, Redemann N, Nigg EA et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 2002; 9: 515–525.

    Article  CAS  PubMed  Google Scholar 

  66. Burkard ME, Randall CL, Larochelle S, Zhang C, Shokat KM, Fisher RP et al. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc Natl Acad Sci USA 2007; 104: 4383–4388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Santamaria A, Neef R, Eberspächer U, Eis K, Husemann M, Mumberg D et al. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol Biol Cell 2007; 18: 4024–4036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elowe S, Hummer S, Uldschmid A, Li X, Nigg EA . Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 2007; 21: 2205–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Suijkerbuijk SJ, Vleugel M, Teixeira A, Kops GJ . Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 2012; 23: 745–755.

    Article  CAS  PubMed  Google Scholar 

  70. Espeut J, Lara-Gonzalez P, Sassine M, Shiau AK, Desai A, Abrieu A . Natural loss of Mps1 kinase in nematodes uncovers a role for Polo-like kinase 1 in spindle checkpoint initiation. Cell Rep 2015; 12: 58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Winey M, Goetsch L, Baum P, Byers B . MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 1991; 114: 745–754.

    Article  CAS  PubMed  Google Scholar 

  72. Hardwick KG, Weiss E, Luca FC, Winey M, Murray AW . Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 1996; 273: 953–956.

    Article  CAS  PubMed  Google Scholar 

  73. Weiss E, Winey M . The Saccharomyces cerevisiae spindle Pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 1996; 132: 111–123.

    Article  CAS  PubMed  Google Scholar 

  74. Jelluma N, Brenkman A, van den Broek N, Cruijsen C, van Osch M, Lens S et al. Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell 2008; 132: 233–246.

    Article  CAS  PubMed  Google Scholar 

  75. London N, Ceto S, Ranish J, Biggins S . Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol 2012; 22: 900–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shepperd LA, Meadows JC, Sochaj AM, Lancaster TC, Zou J, Buttrick GJ et al. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol 2012; 22: 891–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamagishi Y, Yang CH, Tanno Y, Watanabe Y . MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 2012; 14: 746–752.

    Article  CAS  PubMed  Google Scholar 

  78. Krenn V, Overlack K, Primorac I, van Gerwen S, Musacchio A . KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats. Curr Biol 2014; 24: 29–39.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang G, Lischetti T, Nilsson J . A minimal number of MELT repeats supports all the functions of KNL1 in chromosome segregation. J Cell Sci 2014; 127: 871–884.

    Article  CAS  PubMed  Google Scholar 

  80. Primorac I, Weir JR, Chiroli E, Gross F, Hoffmann I, van Gerwen S et al. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. Elife 2013; 2: e01030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vleugel M, Omerzu M, Groenewold V, Hadders MA, Lens SM, Kops GJ . Sequential multisite phospho-regulation of KNL1-BUB3 interfaces at mitotic kinetochores. Mol Cell 2015; 57: 824–835.

    Article  CAS  PubMed  Google Scholar 

  82. Hiruma Y, Sacristan C, Pachis ST, Adamopoulos A, Kujit T, Ubbink M et al. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 2015; 348: 1264–1267.

    Article  CAS  PubMed  Google Scholar 

  83. Ji Z, Gao H, Yu H . Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 2015; 348: 1260–1264.

    Article  CAS  PubMed  Google Scholar 

  84. Chmielewska AE, Tang NH, Toda T . The hairpin region of Ndc80 is important for the kinetochore recruitment of Mph1/MPS1 in fission yeast. Cell Cycle 2016; 15: 740–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Isokane M, Walter T, Mahen R, Nijmeijer B, Heriche JK, Miura K et al. ARHGEF17 is an essential spindle assembly checkpoint factor that targets Mps1 to kinetochores. J Cell Biol 2016; 212: 647–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Conde C, Osswald M, Barbosa J, Moutinho-Santos T, Pinheiro D, Guimaraes S et al. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation. EMBO J 2013; 32: 1761–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schittenhelm RB, Chaleckis R, Lehner CF . Intrakinetochore localization and essential functional domains of Drosophila Spc105. EMBO J 2009; 28: 2374–2386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vleugel M, Hoogendoorn E, Snel B, Kops GJ . Evolution and function of the mitotic checkpoint. Dev Cell 2012; 23: 239–250.

    Article  CAS  PubMed  Google Scholar 

  89. Nogueira C, Kashevsky H, Pinto B, Clarke A, Orr-Weaver TL . Regulation of centromere localization of the Drosophila Shugoshin MEI-S332 and sister-chromatid cohesion in meiosis. G3 (Bethesda) 2014; 4: 1849–1858.

    Article  CAS  Google Scholar 

  90. Hewitt L, Tighe A, Santaguida S, White AM, Jones CD, Musacchio A et al. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol 2010; 190: 25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jelluma N, Dansen T, Sliedrecht T, Kwiatkowski N, Kops G . Release of Mps1 from kinetochores is crucial for timely anaphase onset. J Cell Biol 2010; 191: 281–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Santaguida S, Tighe A, D'Alise A, Taylor S, Musacchio A . Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 2010; 190: 73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dou Z, von Schubert C, Korner R, Santamaria A, Elowe S, Nigg EA . Quantitative mass spectrometry analysis reveals similar substrate consensus motif for human Mps1 kinase and Plk1. PLoS One 2011; 6: e18793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hennrich ML, Marino F, Groenewold V, Kops GJ, Mohammed S, Heck AJ . Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human Mps1. J Proteome Res 2013; 12: 2214–2224.

    Article  CAS  PubMed  Google Scholar 

  95. Wang X, Yu H, Xu L, Zhu T, Zheng F, Fu C et al. Dynamic autophosphorylation of mps1 kinase is required for faithful mitotic progression. PLoS One 2014; 9: e104723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maciejowski J, George K, Terret M-E, Zhang C, Shokat K, Jallepalli P . Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J Cell Biol 2010; 190: 89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wong OK, Fang G . Plx1 is the 3F3/2 kinase responsible for targeting spindle checkpoint proteins to kinetochores. J Cell Biol 2005; 170: 709–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oppermann FS, Grundner-Culemann K, Kumar C, Gruss OJ, Jallepalli PV, Daub H . Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets. Mol Cell Proteomics 2012; 11: 012351.

    Article  CAS  PubMed  Google Scholar 

  99. Jelluma N, Brenkman AB, McLeod I, Yates JR 3rd, Cleveland DW, Medema RH et al. Chromosomal instability by inefficient Mps1 auto-activation due to a weakened mitotic checkpoint and lagging chromosomes. PLoS One 2008; 3: e2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu Q, Zhu S, Wang W, Zhang X, Old W, Ahn N et al. Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mps1 phosphorylation. Mol Biol Cell 2009; 20: 10–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. O'Connor A, Maffini S, Rainey MD, Kaczmarczyk A, Gaboriau D, Musacchio A et al. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open 2015; 5: 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheeseman I, Niessen S, Anderson S, Hyndman F, Yates J, Oegema K et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 2004; 18: 2255–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Desai A, Rybina S, Muller-Reichert T, Shevchenko A, Shevchenko A, Hyman A et al. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev 2003; 17: 2421–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang H, Hittle J, Zappacosta F, Annan RS, Hershko A, Yen TJ . Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J Cell Biol 2008; 183: 667–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Matsumura S, Toyoshima F, Nishida E . Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J Biol Chem 2007; 282: 15217–15227.

    Article  CAS  PubMed  Google Scholar 

  106. Wong OK, Fang G . Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope. J Cell Biol 2007; 179: 611–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Casenghi M, Meraldi P, Weinhart U, Duncan PI, Körner R, Nigg EA . Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 2003; 5: 113–125.

    Article  CAS  PubMed  Google Scholar 

  108. Lee K, Rhee K . PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J Cell Biol 2011; 195: 1093–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mardin BR, Agircan FG, Lange C, Schiebel E . Plk1 controls the Nek2A-PP1gamma antagonism in centrosome disjunction. Curr Biol 2011; 21: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  110. Lénárt P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, Hoffmann M et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 2007; 17: 304–315.

    Article  CAS  PubMed  Google Scholar 

  111. Rancati G, Crispo V, Lucchini G, Piatti S . Mad3/BubR1 phosphorylation during spindle checkpoint activation depends on both Polo and Aurora kinases in budding yeast. Cell Cycle 2005; 4: 972–980.

    Article  CAS  PubMed  Google Scholar 

  112. Elowe S, Dulla K, Uldschmid A, Li X, Dou Z, Nigg EA . Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci 2010; 123: 84–94.

    Article  CAS  PubMed  Google Scholar 

  113. Kruse T, Zhang G, Larsen MS, Lischetti T, Streicher W, Kragh Nielsen T et al. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J Cell Sci 2013; 126: 1086–1092.

    Article  CAS  PubMed  Google Scholar 

  114. Espert A, Uluocak P, Bastos RN, Mangat D, Graab P, Gruneberg U . PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing. J Cell Biol 2014; 206: 833–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Suijkerbuijk SJ, van Dam TJ, Karagoz GE, von Castelmur E, Hubner NC, Duarte AM et al. The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell 2012; 22: 1321–1329.

    Article  CAS  PubMed  Google Scholar 

  116. Suijkerbuijk SJ, van Osch MH, Bos FL, Hanks S, Rahman N, Kops GJ . Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res 2010; 70: 4891–4900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Elowe S . Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 2011; 31: 3085–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tang Z, Shu H, Oncel D, Chen S, Yu H . Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol Cell 2004; 16: 387–397.

    Article  CAS  PubMed  Google Scholar 

  119. Overlack K, Primorac I, Vleugel M, Krenn V, Maffini S, Hoffmann I et al. A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. Elife 2015; 4: e05269.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhang G, Lischetti T, Hayward DG, Nilsson J . Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint. Nat Commun 2015; 6: 7162.

    Article  CAS  PubMed  Google Scholar 

  121. Klebig C, Korinth D, Meraldi P . Bub1 regulates chromosome segregation in a kinetochore-independent manner. J Cell Biol 2009; 185: 841–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Di Fiore B, Davey NE, Hagting A, Izawa D, Mansfeld J, Gibson TJ et al. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators. Dev Cell 2015; 32: 358–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Diaz-Martinez LA, Tian W, Li B, Warrington R, Jia L, Brautigam CA et al. The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis. J Biol Chem 2015; 290: 2431–2443.

    Article  CAS  PubMed  Google Scholar 

  124. Kang J, Yang M, Li B, Qi W, Zhang C, Shokat KM et al. Structure and substrate recruitment of the human spindle checkpoint kinase Bub1. Mol Cell 2008; 32: 394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Burton JL, Solomon MJ . Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev 2007; 21: 655–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. King EM, van der Sar SJ, Hardwick KG . Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS One 2007; 2: e342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Malureanu LA, Jeganathan KB, Hamada M, Wasilewski L, Davenport J, van Deursen JM . BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Dev Cell 2009; 16: 118–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Qi W, Tang Z, Yu H . Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol Biol Cell 2006; 17: 3705–3716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Asghar A, Lajeunesse A, Dulla K, Combes G, Thebault P, Nigg EA et al. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation. Nat Commun 2015; 6: 8364.

    Article  CAS  PubMed  Google Scholar 

  130. Jia L, Li B, Yu H . The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun 2016; 7: 10818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A, Pines J et al. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 2003; 22: 6598–6609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hertz EP, Kruse T, Davey NE, Lopez-Mendez B, Sigurethsson JO, Montoya G et al. A conserved motif provides binding specificity to the PP2A-B56 phosphatase. Mol Cell 2016; 63: 686–695.

    Article  CAS  PubMed  Google Scholar 

  133. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E . PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015; 43: D512–D520.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Elowe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combes, G., Alharbi, I., Braga, L. et al. Playing polo during mitosis: PLK1 takes the lead. Oncogene 36, 4819–4827 (2017). https://doi.org/10.1038/onc.2017.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.113

This article is cited by

Search

Quick links