Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sequestosome 1/p62 facilitates HER2-induced mammary tumorigenesis through multiple signaling pathways

Abstract

Previous studies have shown that increased levels of the adaptor protein Sequestosome 1/p62 are observed in human breast cancers and significantly correlate with HER2 overexpression. However, the role of p62 in the pathophysiology of HER2-induced mammary tumorigenesis has not yet been investigated. In this study, we report that p62 facilitates HER2-mediated cell survival in both two-dimensional and three-dimensional cell culture and that HER2-induced cellular transformation requires p62, as well as NRF2, which is known to become stabilized by its release from Kelch-like ECH-associated protein 1 (KEAP1) via p62-KEAP1 interaction. In agreement with these results, genetic ablation of p62 delays HER2-induced mammary tumorigenesis in tumor cell allografts in nude mice, and in MMTV-Neu transgenic mice. We also report that ablation of p62 impairs AKT and β-catenin activation in association with PTEN (phosphatase and tensin homolog deleted on chromosome ten) accumulation, both in vitro and in vivo. Further in vivo studies suggest that loss of p62 also impairs NF-κB and NRF2 activation. Collectively, our results provide compelling evidence that p62 contributes to HER2-induced mammary tumorigenesis through multiple signaling pathways, including the PTEN/phosphoinositide-3-kinase/AKT axis, WNT/β-catenin signaling, the NF-κB pathway and the NRF2-KEAP1 axis, and offer novel insights into the potential role of p62 in the regulation of the tumor suppressor PTEN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    CAS  PubMed  Google Scholar 

  2. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    CAS  PubMed  Google Scholar 

  3. Liu E, Thor A, He M, Barcos M, Ljung BM, Benz C . The HER2 (c-erbB-2) oncogene is frequently amplified in in situ carcinomas of the breast. Oncogene 1992; 7: 1027–1032.

    CAS  PubMed  Google Scholar 

  4. Park K, Han S, Kim HJ, Kim J, Shin E . HER2 status in pure ductal carcinoma in situ and in the intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in situ hybridization and immunohistochemistry. Histopathology 2006; 48: 702–707.

    CAS  PubMed  Google Scholar 

  5. Hynes NE, MacDonald G . ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 2009; 21: 177–184.

    CAS  PubMed  Google Scholar 

  6. Whitman M, Downes CP, Keeler M, Keller T, Cantley L . Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332: 644–646.

    CAS  PubMed  Google Scholar 

  7. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81: 727–736.

    CAS  PubMed  Google Scholar 

  8. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.

    CAS  PubMed  Google Scholar 

  9. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6: 117–127.

    CAS  PubMed  Google Scholar 

  10. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007; 12: 395–402.

    CAS  PubMed  Google Scholar 

  11. Bose S, Crane A, Hibshoosh H, Mansukhani M, Sandweis L, Parsons R . Reduced expression of PTEN correlates with breast cancer progression. Hum Pathol 2002; 33: 405–409.

    CAS  PubMed  Google Scholar 

  12. Schade B, Lesurf R, Sanguin-Gendreau V, Bui T, Deblois G, O'Toole SA et al. beta-Catenin signaling is a critical event in ErbB2-mediated mammary tumor progression. Cancer Res 2013; 73: 4474–4487.

    CAS  PubMed  Google Scholar 

  13. Arias-Romero LE, Villamar-Cruz O, Huang M, Hoeflich KP, Chernoff J . Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res 2013; 73: 3671–3682.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Niehrs C . The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 2012; 13: 767–779.

    CAS  PubMed  Google Scholar 

  15. Komatsu M, Kageyama S, Ichimura Y . p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 2012; 66: 457–462.

    CAS  PubMed  Google Scholar 

  16. Rolland P, Madjd Z, Durrant L, Ellis IO, Layfield R, Spendlove I . The ubiquitin-binding protein p62 is expressed in breast cancers showing features of aggressive disease. Endocr Relat Cancer 2007; 14: 73–80.

    PubMed  Google Scholar 

  17. Thompson HG, Harris JW, Wold BJ, Lin F, Brody JP . p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells. Oncogene 2003; 22: 2322–2333.

    CAS  PubMed  Google Scholar 

  18. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 2008; 13: 343–354.

    CAS  PubMed  Google Scholar 

  19. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 2011; 193: 275–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA 2011; 108: 12455–12460.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12: 213–223.

    CAS  PubMed  Google Scholar 

  23. Lozy F, Cai-McRae X, Teplova I, Price S, Reddy A, Bhanot G et al. ERBB2 overexpression suppresses stress-induced autophagy and renders ERBB2-induced mammary tumorigenesis independent of monoallelic Becn1 loss. Autophagy 2014; 10: 106–120.

    Google Scholar 

  24. Kuusisto E, Salminen A, Alafuzoff I . Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 2001; 12: 2085–2090.

    CAS  PubMed  Google Scholar 

  25. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005; 171: 603–614.

    PubMed  PubMed Central  Google Scholar 

  26. Babu JR, Geetha T, Wooten MW . Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 2005; 94: 192–203.

    CAS  PubMed  Google Scholar 

  27. Chang MA, Morgado M, Warren CR, Hinton CV, Farach-Carson MC, Delk NA . p62/SQSTM1 is required for cell survival of apoptosis-resistant bone metastatic prostate cancer cell lines. Prostate 2013; 74: 149–163.

    PubMed  Google Scholar 

  28. Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 2007; 21: 1621–1635.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mortimore GE, Schworer CM . Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 1977; 270: 174–176.

    CAS  PubMed  Google Scholar 

  30. White E, DiPaola RS . The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 2009; 15: 5308–5316.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131: 1149–1163.

    CAS  PubMed  Google Scholar 

  32. Shin SI, Freedman VH, Risser R, Pollack R . Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 1975; 72: 4435–4439.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 2011; 44: 134–146.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999; 401: 82–85.

    CAS  PubMed  Google Scholar 

  35. Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ . Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 1998; 281: 2042–2045.

    CAS  PubMed  Google Scholar 

  36. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A et al. Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 2010; 42: 454–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW . Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 2004; 24: 8055–8068.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131–24145.

    CAS  PubMed  Google Scholar 

  39. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 2010; 285: 22576–22591.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Petherick KJ, Williams AC, Lane JD, Ordonez-Moran P, Huelsken J, Collard TJ et al. Autolysosomal beta-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 2013; 32: 1903–1916.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahia PL et al. Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 1999; 155: 1253–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Depowski PL, Rosenthal SI, Ross JS . Loss of expression of the PTEN gene protein product is associated with poor outcome in breast cancer. Mod Pathol 2001; 14: 672–676.

    CAS  PubMed  Google Scholar 

  43. Kim S, Domon-Dell C, Kang J, Chung DH, Freund JN, Evers BM . Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing kinase/NF-kappaB pathway is linked to a default IkappaB-alpha autoregulatory loop. J Biol Chem 2004; 279: 4285–4291.

    CAS  PubMed  Google Scholar 

  44. Joung I, Kim HJ, Kwon YK . p62 modulates Akt activity via association with PKCzeta in neuronal survival and differentiation. Biochem Biophys Res Commun 2005; 334: 654–660.

    CAS  PubMed  Google Scholar 

  45. Geetha T, Zheng C, Vishwaprakash N, Broderick TL, Babu JR . Sequestosome 1/p62, a scaffolding protein, is a newly identified partner of IRS-1 protein. J Biol Chem 2012; 287: 29672–29678.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004; 64: 3892–3899.

    CAS  PubMed  Google Scholar 

  47. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 2009; 7: e1000121.

    PubMed  PubMed Central  Google Scholar 

  48. Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A . Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 2006; 281: 14841–14851.

    CAS  PubMed  Google Scholar 

  49. Karantza-Wadsworth V, White E . A mouse mammary epithelial cell model to identify molecular mechanisms regulating breast cancer progression. Methods Enzymol 2008; 446: 61–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Shridar Ganesan from Rutgers Cancer Institute of New Jersey for his valuable discussion concerning this work and Dr Jawed Alam from The Gayle and Tom Benson Cancer Center for providing us with the dominant-negative NRF2 construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Karantza.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai-McRae, X., Zhong, H. & Karantza, V. Sequestosome 1/p62 facilitates HER2-induced mammary tumorigenesis through multiple signaling pathways. Oncogene 34, 2968–2977 (2015). https://doi.org/10.1038/onc.2014.244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.244

This article is cited by

Search

Quick links