Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Prostate cancer epigenetic biomarkers: next-generation technologies

Subjects

Abstract

Cancer is caused by a combination of genetic alterations and gross changes to the epigenetic landscape that together result in aberrant cancer gene regulation. Therefore, we need to fully sequence both the cancer genome and the matching cancer epigenomes before we can fully integrate the suite of molecular mechanisms involved in initiation and progression of cancer. A further understanding of epigenetic aberrations has a great potential in the next era of molecular genomic pathology in cancer detection and treatment in all types of cancer, including prostate cancer. In this review, we discuss the most common epigenetic aberrations identified in prostate cancer with the biomarker potential. We also describe the innovative and current epigenomic technologies used for the identification of epigenetic-associated changes in prostate cancer and future translational applications in molecular pathology for cancer detection and prognosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    Article  PubMed  Google Scholar 

  2. Masson S, Bahl A . Metastatic castrate-resistant prostate cancer: dawn of a new age of management. BJU Int 2012; 110: 1110–1114.

    Article  PubMed  Google Scholar 

  3. Draisma G, Etzioni R, Tsodikov A, Mariotto A, Wever E, Gulati R et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst 2009; 101: 374–383.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chou R, Croswell JM, Dana T, Bougatsos C, Blazina I, Fu R et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2011; 155: 762–771.

    Article  PubMed  Google Scholar 

  5. Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 2012; 8: e1002750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462: 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomizawa S, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G et al. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 2011; 138: 811–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ziller MJ, Muller F, Liao J, Zhang Y, Gu H, Bock C et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 2011; 7: e1002389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho NY, Kim JH, Moon KC, Kang GH . Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm. Virchows Arch 2009; 454: 17–23.

    Article  CAS  PubMed  Google Scholar 

  11. Yang B, Sun H, Lin W, Hou W, Li H, Zhang L et al. Evaluation of global DNA hypomethylation in human prostate cancer and prostatic intraepithelial neoplasm tissues by immunohistochemistry. Urol Oncol 2013; 31: 628–634.

    Article  CAS  PubMed  Google Scholar 

  12. Brothman AR, Swanson G, Maxwell TM, Cui J, Murphy KJ, Herrick J et al. Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome? Cancer Genet Cytogenet 2005; 156: 31–36.

    Article  CAS  PubMed  Google Scholar 

  13. Cho NY, Kim BH, Choi M, Yoo EJ, Moon KC, Cho YM et al. Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol 2007; 211: 269–277.

    Article  CAS  PubMed  Google Scholar 

  14. Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res 2008; 68: 8954–8967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 2011; 60: 753–766.

    Article  CAS  PubMed  Google Scholar 

  16. Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ . Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene 1999; 18: 1313–1324.

    Article  CAS  PubMed  Google Scholar 

  17. Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson G GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 2004; 91: 540–552.

    Article  CAS  PubMed  Google Scholar 

  18. Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W . The epigenetic promise for prostate cancer diagnosis. Prostate 2012; 72: 1248–1261.

    Article  CAS  PubMed  Google Scholar 

  19. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 2001; 7: 2727–2730.

    CAS  PubMed  Google Scholar 

  20. Goessl C, Muller M, Heicappell R, Krause H, Straub B, Schrader M et al. DNA-based detection of prostate cancer in urine after prostatic massage. Urology 2001; 58: 335–338.

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG . Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 2003; 9: 2673–2677.

    CAS  PubMed  Google Scholar 

  22. Hoque MO, Topaloglu O, Begum S, Henrique R, Rosenbaum E, Van Criekinge W et al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J Clin Oncol 2005; 23: 6569–6575.

    Article  CAS  PubMed  Google Scholar 

  23. Roupret M, Hupertan V, Yates DR, Catto JW, Rehman I, Meuth M et al. Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin Cancer Res 2007; 13: 1720–1725.

    Article  CAS  PubMed  Google Scholar 

  24. Goessl C, Krause H, Muller M, Heicappell R, Schrader M, Sachsinger J et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res 2000; 60: 5941–5945.

    CAS  PubMed  Google Scholar 

  25. Jeronimo C, Usadel H, Henrique R, Silva C, Oliveira J, Lopes C et al. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 2002; 60: 1131–1135.

    Article  PubMed  Google Scholar 

  26. Ellinger J, Bastian PJ, Jurgan T, Biermann K, Kahl P, Heukamp LC et al. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology 2008; 71: 161–167.

    Article  PubMed  Google Scholar 

  27. Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Li LC et al. Multigene methylation analysis for detection and staging of prostate cancer. Clin Cancer Res 2005; 11: 6582–6588.

    Article  CAS  PubMed  Google Scholar 

  28. Baden J, Adams S, Astacio T, Jones J, Markiewicz J, Painter J et al. Predicting prostate biopsy result in men with prostate specific antigen 2.0 to 10.0 ng/ml using an investigational prostate cancer methylation assay. J Urol 2011; 186: 2101–2106.

    Article  PubMed  Google Scholar 

  29. Kriaucionis S, Heintz N . The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009; 324: 929–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324: 930–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iqbal K, Jin SG, Pfeifer GP, Szabo PE . Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 2011; 108: 3642–3647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2011; 2: 241.

    Article  PubMed  CAS  Google Scholar 

  33. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013; 152: 1146–1159.

    Article  CAS  PubMed  Google Scholar 

  34. Jin SG, Jiang Y, Qiu R, Rauch TA, Wang Y, Schackert G et al. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 2011; 71: 7360–7365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2011; 2: 627–637.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 2013; 32: 663–669.

    Article  CAS  PubMed  Google Scholar 

  37. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010; 468: 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perez C, Martinez-Calle N, Martin-Subero JI, Segura V, Delabesse E, Fernandez-Mercado M et al. TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia. PLoS ONE 2012; 7: e31605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep 2012; 2: 568–579.

    Article  CAS  PubMed  Google Scholar 

  40. Guil S, Esteller M . DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 2009; 41: 87–95.

    Article  CAS  PubMed  Google Scholar 

  41. Ozen M, Creighton CJ, Ozdemir M, Ittmann M . Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008; 27: 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  42. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010; 126: 1166–1176.

    CAS  PubMed  Google Scholar 

  43. Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH . Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 2012; 7: 940–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105: 10513–10518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 2011; 128: 608–616.

    Article  CAS  PubMed  Google Scholar 

  46. Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 2012; 106: 768–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim J, Yu J . Interrogating genomic and epigenomic data to understand prostate cancer. Biochim Biophys Acta 2012; 1825: 186–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  49. Chi P, Allis CD, Wang GG . Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010; 10: 457–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsai HC, Baylin SB . Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 2011; 21: 502–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ellinger J, Kahl P, von der Gathen J, Heukamp LC, Gutgemann I, Walter B et al. Global histone H3K27 methylation levels are different in localized and metastatic prostate cancer. Cancer Invest 2011; 30: 92–97.

    Article  PubMed  CAS  Google Scholar 

  52. Pellakuru LG, Iwata T, Gurel B, Schultz D, Hicks J, Bethel C et al. Global levels of H3K27me3 track with differentiation in vivo and are deregulated by MYC in prostate cancer. Am J Pathol 2012; 181: 560–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruijter ET, van de Kaa CA, Schalken JA, Debruyne FM, Ruiter DJ . Histological grade heterogeneity in multifocal prostate cancer. Biological and clinical implications. J Pathol 1996; 180: 295–299.

    Article  CAS  PubMed  Google Scholar 

  54. Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G, Mehra R et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 2007; 67: 10657–10663.

    Article  CAS  PubMed  Google Scholar 

  55. Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 2010; 12: 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T et al. Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 2012; 23: 9–22.

    Article  PubMed  CAS  Google Scholar 

  57. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  58. Laitinen S, Martikainen PM, Tolonen T, Isola J, Tammela TL, Visakorpi T. EZH2, Ki-67 and MCM7 are prognostic markers in prostatectomy treated patients. Int J Cancer 2008; 122: 595–602.

    Article  CAS  PubMed  Google Scholar 

  59. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012; 338: 1465–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 2001; 61: 4315–4319.

    CAS  PubMed  Google Scholar 

  61. Heemers HV, Sebo TJ, Debes JD, Regan KM, Raclaw KA, Murphy LM et al. Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 2007; 67: 3422–3430.

    Article  CAS  PubMed  Google Scholar 

  62. Comuzzi B, Nemes C, Schmidt S, Jasarevic Z, Lodde M, Pycha A et al. The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J Pathol 2004; 204: 159–166.

    Article  CAS  PubMed  Google Scholar 

  63. Halkidou K, Gnanapragasam VJ, Mehta PB, Logan IR, Brady ME, Cook S et al. Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 2003; 22: 2466–2477.

    Article  CAS  PubMed  Google Scholar 

  64. Talbert PB, Henikoff S . Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 2010; 11: 264–275.

    Article  CAS  PubMed  Google Scholar 

  65. Hua S, Kallen CB, Dhar R, Baquero MT, Mason CE, Russell BA et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Molecular systems biology, 2008; 4: 188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 2009; 28: 3423–3428.

    Article  CAS  PubMed  Google Scholar 

  67. Sporn JC, Jung B . Differential regulation and predictive potential of MacroH2A1 isoforms in colon cancer. Am J Pathol 2012; 180: 2516–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E . Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71: 379–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Slupianek A, Yerrum S, Safadi FF, Monroy MA . The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J Cell Physiol 2010; 224: 369–375.

    Article  CAS  PubMed  Google Scholar 

  70. Draker R, Sarcinella E, Cheung P . USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Res 2011; 39: 3529–3542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dryhurst D, McMullen B, Fazli L, Rennie PS, Ausio J . Histone H2A.Z prepares the prostate specific antigen (PSA) gene for androgen receptor-mediated transcription and is upregulated in a model of prostate cancer progression. Cancer Lett 2012; 315: 38–47.

    Article  CAS  PubMed  Google Scholar 

  72. Valdes-Mora F, Song JZ, Statham AL, Strbenac D, Robinson MD, Nair SS et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res 2012; 22: 307–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y et al. Punctuated evolution of prostate cancer genomes. Cell 2013; 153: 666–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011; 29: 742–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM . Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med 2012; 4: 127rv3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Laird PW . Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010; 11: 191–203.

    Article  CAS  PubMed  Google Scholar 

  77. Fraga MF, Esteller M . DNA methylation: a profile of methods and applications. Biotechniques 2002; 33: 632, 634–636-649.

    Article  Google Scholar 

  78. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28: 1097–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 2010; 28: 1106–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Clark SJ, Harrison J, Paul CL, Frommer M . High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994; 22: 2990–2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M . DNA methylation: bisulphite modification and analysis. Nat Protoc 2006; 1: 2353–2364.

    Article  CAS  PubMed  Google Scholar 

  82. Masser DR, Berg AS, Freeman WM . Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenet Chromatin 2013; 6: 33.

    Article  CAS  Google Scholar 

  83. Yu YP, Paranjpe S, Nelson J, Finkelstein S, Ren B, Kokkinakis D et al. High throughput screening of methylation status of genes in prostate cancer using an oligonucleotide methylation array. Carcinogenesis 2005; 26: 471–479.

    Article  CAS  PubMed  Google Scholar 

  84. Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 2008; 18: 780–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res 2011; 21: 1017–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F . Evaluation of the Infinium Methylation 450 K technology. Epigenomics 2011; 3: 771–784.

    Article  CAS  PubMed  Google Scholar 

  87. Robinson MD, Stirzaker C, Statham AL, Coolen MW, Song JZ, Nair SS et al. Evaluation of affinity-based genome-wide DNA methylation data: effects of CpG density, amplification bias, and copy number variation. Genome Res 2010; 20: 1719–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454: 766–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 2011; 6: 692–702.

    Article  CAS  PubMed  Google Scholar 

  90. Wu H, Zhang Y . Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 2011; 25: 2436–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science, 2012; 336: 934–937.

    Article  CAS  PubMed  Google Scholar 

  92. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 2012; 149: 1368–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 2011; 29: 68–72.

    Article  CAS  PubMed  Google Scholar 

  94. Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010; 5: e15367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Leite KR, Canavez JM, Reis ST, Tomiyama AH, Piantino CB, Sanudo A et al. miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue. Urol Oncol 2011; 29: 533–537.

    Article  CAS  PubMed  Google Scholar 

  96. Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 2009; 16: 206–216.

    Article  CAS  PubMed  Google Scholar 

  97. Hulf T, Sibbritt T, Wiklund ED, Patterson K, Song JZ, Stirzaker C et al. Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene 2012; 32: 2891–2899.

    Article  PubMed  CAS  Google Scholar 

  98. Ngollo M, Dagdemir A, Judes G, Kemeny JL, Penault-Llorca F, Boiteux JP et al. Epigenetics of prostate cancer: distribution of histone H3K27me3 biomarkers in peri-tumoral tissue. Omics 2014; 18: 207–209.

    Article  CAS  PubMed  Google Scholar 

  99. Lorincz AT . The promise and the problems of epigenetics biomarkers in cancer. Expert Opin Med Diagn 2011; 5: 375–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bianco-Miotto T, Chiam K, Buchanan G, Jindal S, Day TK, Thomas M et al. Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev 2010; 19: 2611–2622.

    Article  CAS  PubMed  Google Scholar 

  101. Matos LL, Trufelli DC, de Matos MG, da Silva Pinhal MA . Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 2010; 5: 9–20.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schwarzenbach H, Hoon DS, Pantel K . Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11: 426–437.

    Article  CAS  PubMed  Google Scholar 

  103. Metzker ML . Sequencing technologies—the next generation. Nat Rev Genet 2010; 11: 31–46.

    Article  CAS  PubMed  Google Scholar 

  104. Perkel J . Finding the true $1000 genome. Biotechniques 2013; 54: 71–74.

    CAS  PubMed  Google Scholar 

  105. Desai A, Jere A . Next-generation sequencing: ready for the clinics? Clin Genet 2012; 81: 503–510.

    Article  CAS  PubMed  Google Scholar 

  106. Beltran H, Rubin MA . New strategies in prostate cancer: translating genomics into the clinic. Clin Cancer Res 2013; 19: 517–523.

    Article  CAS  PubMed  Google Scholar 

  107. Kedes L, Campany G . The new date, new format, new goals and new sponsor of the Archon Genomics X PRIZE competition. Nat Genet 2011; 43: 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  108. Kedes L, Liu E, Jongeneel CV, Sutton G . Judging the Archon Genomics X PRIZE for whole human genome sequencing. Nat Genet 2011; 43: 175.

    Article  CAS  PubMed  Google Scholar 

  109. Lin PC, Giannopoulou EG, Park K, Mosquera JM, Sboner A, Tewari AK et al. Epigenomic alterations in localized and advanced prostate cancer. Neoplasia 2013; 15: 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim JH, Dhanasekaran SM, Prensner JR, Cao X, Robinson D, Kalyana-Sundaram S et al. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Res 2011; 21: 1028–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bae JB . Perspectives of international human epigenome consortium. Genom Inform 2013; 11: 7–14.

    Article  Google Scholar 

  112. Yavartanoo M, Choi JK . ENCODE: a sourcebook of epigenomes and chromatin language. Genom Inform 2013; 11: 2–6.

    Article  Google Scholar 

  113. Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B et al. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res 2005; 11: 4037–4043.

    Article  CAS  PubMed  Google Scholar 

  114. Henrique R, Ribeiro FR, Fonseca D, Hoque MO, Carvalho AL, Costa VL et al. High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res 2007; 13: 6122–6129.

    Article  CAS  PubMed  Google Scholar 

  115. Bastian PJ, Ellinger J, Wellmann A, Wernert N, Heukamp LC, Muller SC et al. Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 2005; 11: 4097–4106.

    Article  CAS  PubMed  Google Scholar 

  116. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 2004; 64: 1975–1986.

    Article  CAS  PubMed  Google Scholar 

  117. Woodson K, O'Reilly KJ, Ward DE, Walter J, Hanson J, Walk EL et al. CD44 and PTGS2 methylation are independent prognostic markers for biochemical recurrence among prostate cancer patients with clinically localized disease. Epigenetics 2006; 1: 183–186.

    Article  PubMed  Google Scholar 

  118. Cottrell S, Jung K, Kristiansen G, Eltze E, Semjonow A, Ittmann M et al. Discovery and validation of 3 novel DNA methylation markers of prostate cancer prognosis. J Urol 2007; 177: 1753–1758.

    Article  CAS  PubMed  Google Scholar 

  119. Banez LL, Sun L, van Leenders GJ, Wheeler TM, Bangma CH, Freedland SJ et al. Multicenter clinical validation of PITX2 methylation as a prostate specific antigen recurrence predictor in patients with post-radical prostatectomy prostate cancer. J Urol 2010; 184: 149–156.

    Article  CAS  PubMed  Google Scholar 

  120. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37: 853–862.

    Article  CAS  PubMed  Google Scholar 

  121. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 2012; 44: 40–46.

    Article  CAS  Google Scholar 

  122. Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 2010; 7: 133–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Serre D, Lee BH, Ting AH . MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 2010; 38: 391–399.

    Article  CAS  PubMed  Google Scholar 

  124. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2012; 31: 978–991.

    Article  CAS  PubMed  Google Scholar 

  125. Ozsolak F, Milos PM . RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011; 12: 87–98.

    Article  CAS  PubMed  Google Scholar 

  126. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129: 823–837.

    Article  CAS  PubMed  Google Scholar 

  127. Jarrard DF, Bussemakers MJ, Bova GS, Isaacs WB . Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues. Clin Cancer Res. 1995; 1: 1471–1478.

    CAS  PubMed  Google Scholar 

  128. Bhusari S, Yang B, Kueck J, Huang W, Jarrard DF . Insulin-like growth factor-2 (IGF2) loss of imprinting marks a field defect within human prostates containing cancer. Prostate 2011; 71: 1621–1630.

    Article  CAS  PubMed  Google Scholar 

  129. Devaney J, Stirzaker C, Qu W, Song JZ, Statham AL, Patterson KI et al. Epigenetic deregulation across chromosome 2q14.2 differentiates normal from prostate cancer and provides a regional panel of novel DNA methylation cancer biomarkers. Cancer Epidemiol Biomarkers Prev 2011; 20: 148–159.

    Article  CAS  PubMed  Google Scholar 

  130. Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D et al. miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer. 2010; 127: 2768–2776.

    Article  CAS  PubMed  Google Scholar 

  131. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37: 394–400.

    Article  CAS  Google Scholar 

  132. Behbahani TE, Kahl P, von der Gathen J, Heukamp LC, Baumann C, Gutgemann I et al. Alterations of global histone H4K20 methylation during prostate carcinogenesis. BMC Urol 2012; 12: 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 2005; 435: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  134. Ellinger J, Kahl P, von der Gathen J, Rogenhofer S, Heukamp LC, Gutgemann I et al. Global levels of histone modifications predict prostate cancer recurrence. Prostate 2010; 70: 61–69.

    Article  CAS  PubMed  Google Scholar 

  135. Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 2006; 66: 11341–11347.

    Article  CAS  PubMed  Google Scholar 

  136. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ . Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res. 2007; 35: e119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Holdenrieder S, Nagel D, Schalhorn A, Heinemann V, Wilkowski R, von Pawel J et al. Clinical relevance of circulating nucleosomes in cancer. Ann N Y Acad Sci 2008; 1137: 180–189.

    Article  CAS  PubMed  Google Scholar 

  138. Deligezer U, Yaman F, Darendeliler E, Dizdar Y, Holdenrieder S, Kovancilar M et al. Post-treatment circulating plasma BMP6 mRNA and H3K27 methylation levels discriminate metastatic prostate cancer from localized disease. Clin Chim Acta 2010; 411: 1452–1456.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.V.M. is a National Breast Cancer Foundation/Cure Cancer Australia Foundation Postdoctoral Training Fellow. S.J.C. is a National Health and Medical Research Council (NH&MRC) Senior Principal Research Fellow. This work was further supported by Prostate Cancer Foundation of Australia (PCFA) Project Grant (PG 4310) (to F.V.M and S.J.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Clark.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdés-Mora, F., Clark, S. Prostate cancer epigenetic biomarkers: next-generation technologies. Oncogene 34, 1609–1618 (2015). https://doi.org/10.1038/onc.2014.111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.111

This article is cited by

Search

Quick links