Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver

Abstract

The androgen receptor (AR) is expressed in many cell types and the androgen/AR signaling has been found to have important roles in modulating tumorigenesis and metastasis in several cancers including prostate, bladder, kidney, lung, breast and liver. However, whether AR has differential roles in the individual cells within these tumors that contain a variety of cell types remains unclear. Generation of AR knockout (ARKO) mouse models with deletion of AR in selective cells within tumors indeed have uncovered many unique AR roles in the individual cell types during cancer development and progression. This review will discuss the results obtained from various ARKO mice and different human cell lines with special attention to the cell type- and tissue-specific ARKO models. The understanding of various results showing the AR indeed has distinct and contrasting roles in each cell type within many hormone-related tumors (as stimulator in bladder, kidney and lung metastases vs as suppressor in prostate and liver metastases) may eventually help us to develop better therapeutic approaches by targeting the AR or its downstream signaling in individual cell types to better battle these hormone-related tumors in different stages.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Yeh S, Chang C . Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 1996; 93: 5517–5521.

    CAS  Google Scholar 

  2. Heinlein CA, Chang C . Androgen receptor (AR) coregulators: an overview. Endocr Rev 2002; 23: 175–200.

    CAS  Google Scholar 

  3. Heemers HV, Tindall DJ . Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007; 28: 778–808.

    CAS  Google Scholar 

  4. Heinlein CA, Chang C . The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 2002; 16: 2181–2187.

    CAS  Google Scholar 

  5. Gonzalez-Montelongo MC, Marin R, Gomez T, Diaz M . Androgens are powerful non-genomic inducers of calcium sensitization in visceral smooth muscle. Steroids 2010; 75: 533–538.

    CAS  Google Scholar 

  6. Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci USA 2002; 99: 13498–13503.

    CAS  Google Scholar 

  7. Niu Y, Chang TM, Yeh S, Ma WL, Wang YZ, Chang C . Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene 2010; 29: 3593–3604.

    CAS  Google Scholar 

  8. Han G, Buchanan G, Ittmann M, Harris JM, Yu X, Demayo FJ et al. Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA 2005; 102: 1151–1156.

    CAS  Google Scholar 

  9. Zhu C, Luong R, Zhuo M, Johnson DT, McKenney JK, Cunha GR et al. Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate. J Biol Chem 2011; 286: 33478–33488.

    CAS  Google Scholar 

  10. Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA, Messing EM et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA 2008; 105: 12182–12187.

    CAS  Google Scholar 

  11. Marques RB, Erkens-Schulze S, de Ridder CM, Hermans KG, Waltering K, Visakorpi T et al. Androgen receptor modifications in prostate cancer cells upon long-termandrogen ablation and antiandrogen treatment. Int J Cancer J 2005; 117: 221–229.

    CAS  Google Scholar 

  12. Halin S, Hammarsten P, Wikstrom P, Bergh A . Androgen-insensitive prostate cancer cells transiently respond to castration treatment when growing in an androgen-dependent prostate environment. Prostate 2007; 67: 370–377.

    Google Scholar 

  13. Gleave M, Hsieh JT, Gao CA, von Eschenbach AC, Chung LW . Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 1991; 51: 3753–3761.

    CAS  Google Scholar 

  14. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4: 209–221.

    CAS  Google Scholar 

  15. Lai KP, Yamashita S, Huang CK, Yeh S, Chang C . Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol Med 2012; 4: 791–807.

    CAS  Google Scholar 

  16. Couto SS, Cao M, Duarte PC, Banach-Petrosky W, Wang S, Romanienko P et al. Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer. Differentiation 2009; 77: 103–111.

    CAS  Google Scholar 

  17. Ricke EA, Williams K, Lee YF, Couto S, Wang Y, Hayward SW et al. Androgen hormone action in prostatic carcinogenesis: stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis 2012; 33: 1391–1398.

    CAS  Google Scholar 

  18. Ricke WA, Ishii K, Ricke EA, Simko J, Wang Y, Hayward SW et al. Steroid hormones stimulate human prostate cancer progression and metastasis. Int J Cancer 2006; 118: 2123–2131.

    CAS  Google Scholar 

  19. Olapade-Olaopa EO, MacKay EH, Taub NA, Sandhu DP, Terry TR, Habib FK . Malignant transformation of human prostatic epithelium is associated with the loss of androgen receptor immunoreactivity in the surrounding stroma. Clin Cancer Res 1999; 5: 569–576.

    CAS  Google Scholar 

  20. Li Y, Li CX, Ye H, Chen F, Melamed J, Peng Y et al. Decrease in stromal androgen receptor associates with androgen-independent disease and promotes prostate cancer cell proliferation and invasion. J Cell Mol Med 2008; 12: 2790–2798.

    CAS  Google Scholar 

  21. Gingrich JR, Barrios RJ, Kattan MW, Nahm HS, Finegold MJ, Greenberg NM . Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res 1997; 57: 4687–4691.

    CAS  Google Scholar 

  22. Gingrich JR, Barrios RJ, Morton RA, Boyce BF, DeMayo FJ, Finegold MJ et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res 1996; 56: 4096–4102.

    CAS  Google Scholar 

  23. Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 2001; 101: 61–69.

    CAS  Google Scholar 

  24. Niu Y, Altuwaijri S, Yeh S, Lai KP, Yu S, Chuang KH et al. Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci USA 2008; 105: 12188–12193.

    CAS  Google Scholar 

  25. Chiaverotti T, Couto SS, Donjacour A, Mao JH, Nagase H, Cardiff RD et al. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 2008; 172: 236–246.

    CAS  Google Scholar 

  26. Litvinov IV, De Marzo AM, Isaacs JT . Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J Clin Endocrinol Metab 2003; 88: 2972–2982.

    CAS  Google Scholar 

  27. Tokar EJ, Ancrile BB, Cunha GR, Webber MM . Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation 2005; 73: 463–473.

    CAS  Google Scholar 

  28. Walters KA, McTavish KJ, Seneviratne MG, Jimenez M, McMahon AC, Allan CM et al. Subfertile female androgen receptor knockout mice exhibit defects in neuroendocrine signaling, intraovarian function, and uterine development but not uterine function. Endocrinology 2009; 150: 3274–3282.

    CAS  Google Scholar 

  29. Mirosevich J, Bentel JM, Zeps N, Redmond SL, D'Antuono MF, Dawkins HJ . Androgen receptor expression of proliferating basal and luminal cells in adult murine ventral prostate. J Endocrinol 1999; 162: 341–350.

    CAS  Google Scholar 

  30. Wu CT, Altuwaijri S, Ricke WA, Huang SP, Yeh S, Zhang C et al. Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc Natl Acad Sci USA 2007; 104: 12679–12684.

    CAS  Google Scholar 

  31. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25: 1696–1708.

    CAS  Google Scholar 

  32. Heer R, Robson CN, Shenton BK, Leung HY . The role of androgen in determining differentiation and regulation of androgen receptor expression in the human prostatic epithelium transient amplifying population. J Cell Physiol 2007; 212: 572–578.

    CAS  Google Scholar 

  33. van Leenders G, Dijkman H, Hulsbergen-van de Kaa C, Ruiter D, Schalken J . Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 2000; 80: 1251–1258.

    CAS  Google Scholar 

  34. Lee SO, Ma Z, Yeh CR, Luo J, Lin TH, Lai KP et al. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. J Mol Cell Biol 20113; 5: 14–26.

    CAS  Google Scholar 

  35. Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L et al. Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2'-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem 2012; 287: 39954–39966.

    CAS  Google Scholar 

  36. Kinoshita H, Shi Y, Sandefur C, Meisner LF, Chang C, Choon A et al. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res 2000; 60: 3623–3630.

    CAS  Google Scholar 

  37. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    CAS  Google Scholar 

  38. Wang XD, Leow CC, Zha J, Tang Z, Modrusan Z, Radtke F et al. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev Biol 2006; 290: 66–80.

    CAS  Google Scholar 

  39. van Leenders GJ, Aalders TW, Hulsbergen-van de Kaa CA, Ruiter DJ, Schalken JA . Expression of basal cell keratins in human prostate cancer metastases and cell lines. J Pathol 2001; 195: 563–570.

    CAS  Google Scholar 

  40. van Leenders G, van Balken B, Aalders T, Hulsbergen-van de Kaa C, Ruiter D, Schalken J . Intermediate cells in normal and malignant prostate epithelium express c-MET: implications for prostate cancer invasion. Prostate 2002; 51: 98–107.

    CAS  Google Scholar 

  41. Lee SO, Ma Z, Yeh CR, Luo J, Lin TH, Lai KP et al. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. J Mol Cell Biol 2013; 5: 14–26.

    CAS  Google Scholar 

  42. Lai KP, Huang CK, Chang YJ, Chung CY, Yamashita S, Li L et al. New therapeutic approach to suppress castration-resistant prostate cancer using ASC-J9 via targeting androgen receptor in selective prostate cells. Am J Pathol 2013; 182: 460–473.

    CAS  Google Scholar 

  43. Ma WL, Hsu CL, Wu MH, Wu CT, Wu CC, Lai JJ et al. Androgen receptor is a new potential therapeutic target for the treatment of hepatocellular carcinoma. Gastroenterology 2008 135 3: 55 e1–55 e5.

    Google Scholar 

  44. Yang Z, Chang YJ, Yu IC, Yeh S, Wu CC, Miyamoto H et al. ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nat Med 2007; 13: 348–353.

    CAS  Google Scholar 

  45. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. Cancer J Clin 2010; 60: 277–300.

    Google Scholar 

  46. Hartge P, Harvey EB, Linehan WM, Silverman DT, Sullivan JW, Hoover RN et al. Unexplained excess risk of bladder cancer in men. J Natl Cancer Inst 1990; 82: 1636–1640.

    CAS  Google Scholar 

  47. Bertram JS, Craig AW . Specific induction of bladder cancer in mice by butyl-(4-hydroxybutyl)-nitrosamine and the effects of hormonal modifications on the sex difference in response. Eur J Cancer 1972; 8: 587–594.

    CAS  Google Scholar 

  48. Salmi S, Santti R, Gustafsson JA, Makela S . Co-localization of androgen receptor with estrogen receptor beta in the lower urinary tract of the male rat. J Urol 2001; 166: 674–677.

    CAS  Google Scholar 

  49. Boorjian S, Ugras S, Mongan NP, Gudas LJ, You X, Tickoo SK et al. Androgen receptor expression is inversely correlated with pathologic tumor stage in bladder cancer. Urology 2004; 64: 383–388.

    Google Scholar 

  50. Miyamoto H, Yang Z, Chen YT, Ishiguro H, Uemura H, Kubota Y et al. Promotion of bladder cancer development and progression by androgen receptor signals. J Natl Cancer Inst 2007; 99: 558–568.

    CAS  Google Scholar 

  51. Izumi K, Zheng Y, Hsu JW, Chang C, Miyamoto H . Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-induced bladder carcinogenesis. Mol Carcinogenesis 2013; 52: 94–102.

    Google Scholar 

  52. Hsu JW, Hsu I, Xu D, Miyamoto H, Liang L, Wu XR et al. Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. Am J Pathol 2013; 182: 1811–1820.

    CAS  Google Scholar 

  53. Mo L, Cheng J, Lee EY, Sun TT, Wu XR . Gene deletion in urothelium by specific expression of Cre recombinase. Am J Physiol Renal Physiol 2005; 289: F562–F568.

    CAS  Google Scholar 

  54. Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR . Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 1999; 59: 3512–3517.

    CAS  Google Scholar 

  55. Roupret M, Zigeuner R, Palou J, Boehle A, Kaasinen E, Sylvester R et al. European guidelines for the diagnosis and management of upper urinary tract urothelial cell carcinomas: 2011 update. Eur Urol 2011; 59: 584–594.

    Google Scholar 

  56. Li CC, Chang TH, Wu WJ, Ke HL, Huang SP, Tsai PC et al. Significant predictive factors for prognosis of primary upper urinary tract cancer after radical nephroureterectomy in Taiwanese patients. Eur Urol 2008; 54: 1127–1134.

    Google Scholar 

  57. Hall MC, Womack JS, Roehrborn CG, Carmody T, Sagalowsky AI . Advanced transitional cell carcinoma of the upper urinary tract: patterns of failure, survival and impact of postoperative adjuvant radiotherapy. J Urol 1998; 160 (3 Pt 1): 703–706.

    CAS  Google Scholar 

  58. Munoz JJ, Ellison LM . Upper tract urothelial neoplasms: incidence and survival during the last 2 decades. J Urol 2000; 164: 1523–1525.

    CAS  Google Scholar 

  59. Ozsahin M, Zouhair A, Villa S, Storme G, Chauvet B, Taussky D et al. Prognostic factors in urothelial renal pelvis and ureter tumours: a multicentre Rare Cancer Network study. Eur J Cancer 1999; 35: 738–743.

    CAS  Google Scholar 

  60. Papatsoris AG, Chrisofos M, Skolarikos A, Varkarakis I, Lekas A, Dellis A et al. Upper urinary tract transitional cell carcinoma. A 10-year experience. Tumori 2008; 94: 75–78.

    Google Scholar 

  61. Shyr CR, Chen CC, Hsieh TF, Chang CH, Ma WL, Yeh S et al. The expression and actions of androgen receptor in upper urinary tract urothelial carcinoma (UUTUC) tissues and the primary cultured cells. Endocrine 2013; 43: 191–199.

    CAS  Google Scholar 

  62. Remzi M, Shariat S, Huebner W, Fajkovic H, Seitz C . Upper urinary tract urothelial carcinoma: what have we learned in the last 4 years? Ther Adv Urol 2011; 3: 69–80.

    Google Scholar 

  63. Chen CC, Hsieh TF, Chang CH, Ma WL, Hung XF, Tasi YR . Androgen receptor promotes migration and invasion of upper urinary tract urothelial caucinoma cells through upregulation of MMP9 and COX-2 signaling. Oncol Rep 2013; 30: 979–985.

    CAS  Google Scholar 

  64. Hsieh TF, Chen CC, Yu AL, Ma WL, Zhang C, Shyr CR et al. Androgen receptor decreases the cytotoxic effects of chemotherapeutic drugs in upper urinary tract urothelial carcinoma cells. Oncol Lett 2013; 5: 1325–1330.

    CAS  Google Scholar 

  65. Robey R, Polgar O, Deeken J, To KW, Bates SE . ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 2007; 26: 39–57.

    CAS  Google Scholar 

  66. Gago-Dominguez M, Castelao JE, Yuan JM, Ross RK, Yu MC . Increased risk of renal cell carcinoma subsequent to hysterectomy. Cancer Epidemiol Biomarkers Prev 1999; 8: 999–1003.

    CAS  Google Scholar 

  67. Motzer RJ, Russo P . Systemic therapy for renal cell carcinoma. J Urol 2000; 163: 408–417.

    CAS  Google Scholar 

  68. Chow WH, Dong LM, Devesa SS . Epidemiology and risk factors for kidney cancer. Nat Rev Urol 2010; 7: 245–257.

    Google Scholar 

  69. Li L, Zhu GY, Liang L, He D, Chang C . New therapy via targeting androgen receptor-induced HIF-2α/VEGF signaling with ASC-J9® to suppress renal cell carcinoma progression.2013, Submitted.

  70. Jemal A, Center MM, DeSantis C, Ward EM . Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010; 19: 1893–1907.

    Google Scholar 

  71. Wilson CM, McPhaul MJ . A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol 1996; 120: 51–57.

    CAS  Google Scholar 

  72. Mikkonen L, Pihlajamaa P, Sahu B, Zhang FP, Janne OA . Androgen receptor and androgen-dependent gene expression in lung. Mol Cell Endocrinol 2010; 317: 14–24.

    CAS  Google Scholar 

  73. Lu HH, Yeh SD, Chou YT, Tsai TYT, Chang C, Wu CW . Androgen receptor regulates lung cancer progression through modulation of OCT-A expression. Abstract (#2126) in 2011 AACR annual meeting 2011, Orlando, FL, USA.

  74. Yeh SD, Yang PC, Lu HH, Chang C, Wu CW . Targeting androgen receptor as a new potential therapeutic approach to battle tobacco carcinogens-induced non-small cell lung cancer. Abstract in 2012 Sino-American Symposium on Clinical and Translational Medicine 2012, Shanghai, China.

  75. Hecht SS, Isaacs S, Trushin N . Lung tumor induction in A/J mice by the tobacco smoke carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene: a potentially useful model for evaluation of chemopreventive agents. Carcinogenesis 1994; 15: 2721–2725.

    CAS  Google Scholar 

  76. Peters KM, Edwards SL, Nair SS, French JD, Bailey PJ, Salkield K et al. Androgen receptor expression predicts breast cancer survival: the role of genetic and epigenetic events. BMC Cancer 2012; 12: 132.

    CAS  Google Scholar 

  77. Nahleh Z . Androgen receptor as a target for the treatment of hormone receptor-negative breast cancer: an unchartered territory. Future Oncol 2008; 4: 15–21.

    CAS  Google Scholar 

  78. McNamara KM, Yoda T, Takagi K, Miki Y, Suzuki T, Sasano H . Androgen receptor in triple negative breast cancer. J Steroid Biochem Mol Biol 2013; 133: 66–76.

    CAS  Google Scholar 

  79. Hickey TE, Robinson JL, Carroll JS, Tilley WD . Minireview: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol 2012; 26: 1252–1267.

    CAS  Google Scholar 

  80. Sutton LM, Cao D, Sarode V, Molberg KH, Torgbe K, Haley B et al. Decreased androgen receptor expression is associated with distant metastases in patients with androgen receptor-expressing triple-negative breast carcinoma. Am J Clin Pathol 2012; 138: 511–516.

    Google Scholar 

  81. Ni M, Chen Y, Fei T, Li D, Lim E, Liu XS et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev 2013; 27: 734–748.

    CAS  Google Scholar 

  82. Yeh S, Hu YC, Wang PH, Xie C, Xu Q, Tsai MY et al. Abnormal mammary gland development and growth retardation in female mice and MCF7 breast cancer cells lacking androgen receptor. J Exp Med 2003; 198: 1899–1908.

    CAS  Google Scholar 

  83. Simanainen U, Gao YR, Walters KA, Watson G, Desai R, Jimenez M et al. Androgen resistance in female mice increases susceptibility to DMBA-induced mammary tumors. Hormones Cancer 2012; 3: 113–124.

    CAS  Google Scholar 

  84. Panet-Raymond V, Gottlieb B, Beitel LK, Pinsky L, Trifiro MA . Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol 2000; 167: 139–150.

    CAS  Google Scholar 

  85. El-Serag HB, Rudolph KL . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557–2576.

    CAS  Google Scholar 

  86. Kalra M, Mayes J, Assefa S, Kaul AK, Kaul R . Role of sex steroid receptors in pathobiology of hepatocellular carcinoma. World J Gastroenterol 2008; 14: 5945–5961.

    CAS  Google Scholar 

  87. Vesselinovitch SD, Itze L, Mihailovich N, Rao KV . Modifying role of partial hepatectomy and gonadectomy in ethylnitrosourea-induced hepatocarcinogenesis. Cancer Res 1980; 40: 1538–1542.

    CAS  Google Scholar 

  88. Matsumoto T, Takagi H, Mori M . Androgen dependency of hepatocarcinogenesis in TGFalpha transgenic mice. Liver 2000; 20: 228–233.

    CAS  Google Scholar 

  89. Rogers AB, Theve EJ, Feng Y, Fry RC, Taghizadeh K, Clapp KM et al. Hepatocellular carcinoma associated with liver-gender disruption in male mice. Cancer Res 2007; 67: 11536–11546.

    CAS  Google Scholar 

  90. Colleoni M, Nelli P, Vicario G, Mastropasqua G, Manente P . Megestrol acetate in unresectable hepatocellular carcinoma. Tumori 1995; 81: 351–353.

    CAS  Google Scholar 

  91. Chao Y, Chan WK, Huang YS, Teng HC, Wang SS, Lui WY et al. Phase II study of flutamide in the treatment of hepatocellular carcinoma. Cancer 1996; 77: 635–639.

    CAS  Google Scholar 

  92. Groupe d'Etude et de Traitement du Carcinome Hépatocellulaire. Randomized trial of leuprorelin and flutamide in male patients with hepatocellular carcinoma treated with tamoxifen. Hepatology 2004; 40: 1361–1369.

  93. Llovet JM . Updated treatment approach to hepatocellular carcinoma. J Gastroenterol 2005; 40: 225–235.

    Google Scholar 

  94. Kemp CJ, Leary CN, Drinkwater NR . Promotion of murine hepatocarcinogenesis by testosterone is androgen receptor-dependent but not cell autonomous. Proc Natl Acad Sci USA 1989; 86: 7505–7509.

    CAS  Google Scholar 

  95. Ma WL, Hsu CL, Yeh CC, Wu MH, Huang CK, Jeng LB et al. Hepatic androgen receptor suppresses hepatocellular carcinoma metastasis through modulation of cell migration and anoikis. Hepatology 2012; 56: 176–185.

    CAS  Google Scholar 

  96. Jie X, Lang C, Jian Q, Chaoqun L, Dehua Y, Yi S et al. Androgen activates PEG10 to promote carcinogenesis in hepatic cancer cells. Oncogene 2007; 26: 5741–5751.

    CAS  Google Scholar 

  97. Guo K, Liu Y, Zhou H, Dai Z, Zhang J, Sun R et al. Involvement of protein kinase C beta-extracellular signal-regulating kinase 1/2/p38 mitogen-activated protein kinase-heat shock protein 27 activation in hepatocellular carcinoma cell motility and invasion. Cancer Sci 2008; 99: 486–496.

    CAS  Google Scholar 

  98. Prickett TD, Brautigan DL . Cytokine activation of p38 mitogen-activated protein kinase and apoptosis is opposed by alpha-4 targeting of protein phosphatase 2 A for site-specific dephosphorylation of MEK3. Mol Cell Biolo 2007; 27: 4217–4227.

    CAS  Google Scholar 

  99. Sahai E . Illuminating the metastatic process. Nat Rev Cancer 2007; 7: 737–749.

    CAS  Google Scholar 

  100. Zheng Y, Chen WL, Ma WL, Chang C, Ou JH . Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein. Virology 2007; 363: 454–461.

    CAS  Google Scholar 

  101. Wu MH, Ma WL, Hsu CL, Chen YL, Ou JH, Ryan CK et al. Androgen receptor promotes hepatitis B virus-induced hepatocarcinogenesis through modulation of hepatitis B virus RNA transcription. Sci Translational Med 2010; 2 32ra5.

    Google Scholar 

  102. Yang WJ, Chang CJ, Yeh SH, Lin WH, Wang SH, Tsai TF et al. Hepatitis B virus X protein enhances the transcriptional activity of the androgen receptor through c-Src and glycogen synthase kinase-3beta kinase pathways. Hepatology 2009; 49: 1515–1524.

    CAS  Google Scholar 

  103. Singh M, Kumar V . Transgenic mouse models of hepatitis B virus-associated hepatocellular carcinoma. Rev Med Virol 2003; 13: 243–253.

    CAS  Google Scholar 

  104. Nijhara R, Jana SS, Goswami SK, Rana A, Majumdar SS, Kumar V et al. Sustained activation of mitogen-activated protein kinases and activator protein 1 by the hepatitis B virus X protein in mouse hepatocytes in vivo. J Virol 2001; 75: 10348–10358.

    CAS  Google Scholar 

  105. Tavian D, De Petro G, Pitozzi A, Portolani N, Giulini SM, Barlati S . Androgen receptor mRNA under-expression in poorly differentiated human hepatocellular carcinoma. Histol Histopathol 2002; 17: 1113–1119.

    CAS  Google Scholar 

Download references

Acknowledgements

NIH Grants (CA127300 and CA156700), and Taiwan Department of Health Clinical Trial and Research Center of Excellence Grant DOH99-TD-B-111-004 (China Medical University, Taichung, Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Chang.

Ethics declarations

Competing interests

ASC-J9 was patented by the University of Rochester, the University of North Carolina, and AndroScience, and then licensed to AndroScience. Both the University of Rochester and CC own royalties and equity in AndroScience.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C., Lee, S., Yeh, S. et al. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene 33, 3225–3234 (2014). https://doi.org/10.1038/onc.2013.274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.274

Keywords

This article is cited by

Search

Quick links