Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells

Abstract

Solid tumors often exhibit simultaneously inflammatory and hypoxic microenvironments. The ‘signal transducer and activator of transcription-3’ (STAT3)-mediated inflammatory response and the hypoxia-inducible factor (HIF)-mediated hypoxia response have been independently shown to promote tumorigenesis through the activation of HIF or STAT3 target genes and to be indicative of a poor prognosis in a variety of tumors. We report here for the first time that STAT3 is involved in the HIF1, but not HIF2-mediated hypoxic transcriptional response. We show that inhibiting STAT3 activity in MDA-MB-231 and RCC4 cells by a STAT3 inhibitor or STAT3 small interfering RNA significantly reduces the levels of HIF1, but not HIF2 target genes in spite of normal levels of hypoxia-inducible transcription factor 1α (HIF1α) and HIF2α protein. Mechanistically, STAT3 activates HIF1 target genes by binding to HIF1 target gene promoters, interacting with HIF1α protein and recruiting coactivators CREB binding protein (CBP) and p300, and RNA polymerase II (Pol II) to form enhanceosome complexes that contain HIF1α, STAT3, CBP, p300 and RNA Pol II on HIF1 target gene promoters. Functionally, the effect of STAT3 knockdown on proliferation, motility and clonogenic survival of tumor cells in vitro is phenocopied by HIF1α knockdown in hypoxic cells, whereas STAT3 knockdown in normoxic cells also reduces cell proliferation, motility and clonogenic survival. This indicates that STAT3 works with HIF1 to activate HIF1 target genes and to drive HIF1-depedent tumorigenesis under hypoxic conditions, but also has HIF-independent activity in normoxic and hypoxic cells. Identifying the role of STAT3 in the hypoxia response provides further data supporting the effectiveness of STAT3 inhibitors in solid tumor treatment owing to their usefulness in inhibiting both the STAT3 and HIF1 pro-tumorigenic signaling pathways in some cancer types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Finger EC, Giaccia AJ . Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 2010; 29: 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keith B, Johnson RS, Simon MC . HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2012; 12: 9–22.

    Article  CAS  Google Scholar 

  3. Semenza GL . Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaelin Jr WG . Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb Symp Quant Biol 2011; 76: 335–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowman T, Garcia R, Turkson J, Jove R . STATs in oncogenesis. Oncogene 2000; 19: 2474–2488.

    Article  CAS  PubMed  Google Scholar 

  6. Bromberg J, Darnell Jr JE . The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000; 19: 2468–2473.

    Article  CAS  PubMed  Google Scholar 

  7. Horiguchi A, Oya M, Shimada T, Uchida A, Marumo K, Murai M . Activation of signal transducer and activator of transcription 3 in renal cell carcinoma: a study of incidence and its association with pathological features and clinical outcome. J Urol 2002; 168: 762–765.

    Article  CAS  PubMed  Google Scholar 

  8. Yu H, Jove R . The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 2004; 4: 97–105.

    Article  CAS  PubMed  Google Scholar 

  9. Horvath CM . STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 2000; 25: 496–502.

    Article  CAS  PubMed  Google Scholar 

  10. Lee MY, Joung YH, Lim EJ, Park JH, Ye SK, Park T et al. Phosphorylation and activation of STAT proteins by hypoxia in breast cancer cells. Breast 2006; 15: 187–195.

    Article  CAS  PubMed  Google Scholar 

  11. Noman MZ, Buart S, Van Pelt J, Richon C, Hasmim M, Leleu N et al. The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J Immunol 2009; 182: 3510–3521.

    Article  CAS  PubMed  Google Scholar 

  12. Selvendiran K, Bratasz A, Kuppusamy ML, Tazi MF, Rivera BK, Kuppusamy P . Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3. Int J Cancer 2009; 125: 2198–2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. Faseb J 2005; 19: 1296–1298.

    Article  CAS  PubMed  Google Scholar 

  14. Kang SH, Yu MO, Park KJ, Chi SG, Park DH, Chung YG . Activated STAT3 regulates hypoxia-induced angiogenesis and cell migration in human glioblastoma. Neurosurgery 2010; 67: 1386–1395 discussion 95.

    Article  PubMed  Google Scholar 

  15. Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS et al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 2005; 24: 3110–3120.

    Article  CAS  PubMed  Google Scholar 

  16. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21: 2000–2008.

    Article  CAS  PubMed  Google Scholar 

  17. Rathinavelu A, Narasimhan M, Muthumani P . A novel regulation of VEGF expression by HIF-1alpha and STAT3 in HDM2 transfected prostate cancer cells. J Cell Mol Med 2012; 16: 1750–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santra M, Santra S, Zhang J, Chopp M . Ectopic decorin expression up-regulates VEGF expression in mouse cerebral endothelial cells via activation of the transcription factors Sp1, HIF1alpha, and Stat3. J Neurochem 2008; 105: 324–337.

    Article  CAS  PubMed  Google Scholar 

  19. Oh MK, Park HJ, Kim NH, Park SJ, Park IY, Kim IS . Hypoxia-inducible factor-1alpha enhances haptoglobin gene expression by improving binding of STAT3 to the promoter. J Biol Chem 2011; 286: 8857–8865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu CJ, Sataur A, Wang L, Chen H, Simon MC . The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 2007; 18: 4528–4542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC . Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 2003; 23: 9361–9374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 2005; 25: 5675–5686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. Faseb J 2004; 18: 1462–1464.

    Article  CAS  PubMed  Google Scholar 

  24. Bando H, Toi M, Kitada K, Koike M . Genes commonly upregulated by hypoxia in human breast cancer cells MCF-7 and MDA-MB-231. Biomed Pharmacother 2003; 57: 333–340.

    Article  CAS  PubMed  Google Scholar 

  25. Indelicato M, Pucci B, Schito L, Reali V, Aventaggiato M, Mazzarino MC et al. Role of hypoxia and autophagy in MDA-MB-231 invasiveness. J Cell Physiol 2010; 223: 359–368.

    CAS  PubMed  Google Scholar 

  26. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275.

    Article  CAS  PubMed  Google Scholar 

  27. Zia MK, Rmali KA, Watkins G, Mansel RE, Jiang WG . The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells. Int J Mol Med 2007; 20: 605–611.

    CAS  PubMed  Google Scholar 

  28. Pham NA, Magalhaes JM, Do T, Schwock J, Dhani N, Cao PJ et al. Activation of Src and Src-associated signaling pathways in relation to hypoxia in human cancer xenograft models. Int J Cancer 2009; 124: 280–286.

    Article  CAS  PubMed  Google Scholar 

  29. Squarize CH, Castilho RM, Sriuranpong V, Pinto Jr DS, Gutkind JS . Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia 2006; 8: 733–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao X, Wang H, Yang JJ, Liu X, Liu ZR . Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 2012; 45: 598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bartoli M, Platt D, Lemtalsi T, Gu X, Brooks SE, Marrero MB et al. VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J 2003; 17: 1562–1564.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Byfield G, Jiang Y, Smith GW, McCloskey M, Hartnett ME . VEGF-mediated STAT3 activation inhibits retinal vascularization by down-regulating local erythropoietin expression. Am J Pathol 2012; 180: 1243–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piperi C, Samaras V, Levidou G, Kavantzas N, Boviatsis E, Petraki K et al. Prognostic significance of IL-8-STAT-3 pathway in astrocytomas: correlation with IL-6, VEGF and microvessel morphometry. Cytokine 2011; 55: 387–395.

    Article  CAS  PubMed  Google Scholar 

  34. Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC . Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol 2006; 26: 3514–3526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res 2008; 6: 1099–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 2007; 21: 1037–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Demaria M, Giorgi C, Lebiedzinska M, Esposito G, D'Angeli L, Bartoli A et al. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging 2010; 2: 823–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim JW, Tchernyshyov I, Semenza GL, Dang CV . HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177–185.

    Article  PubMed  Google Scholar 

  40. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC . HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3: 187–197.

    Article  CAS  PubMed  Google Scholar 

  41. Grad JM, Zeng XR, Boise LH . Regulation of Bcl-xL: a little bit of this and a little bit of STAT. Curr Opin Oncol 2000; 12: 543–549.

    Article  CAS  PubMed  Google Scholar 

  42. Horiguchi A, Asano T, Kuroda K, Sato A, Asakuma J, Ito K et al. STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br J Cancer 2010; 102: 1592–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carraro F, Pucci A, Pellegrini M, Pelicci PG, Baldari CT, Naldini A . p66Shc is involved in promoting HIF-1alpha accumulation and cell death in hypoxic T cells. J Cell Physiol 2007; 211: 439–447.

    Article  CAS  PubMed  Google Scholar 

  44. Paulson M, Pisharody S, Pan L, Guadagno S, Mui AL, Levy DE . Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem 1999; 274: 25343–25349.

    Article  CAS  PubMed  Google Scholar 

  45. Yuan ZL, Guan YJ, Chatterjee D, Chin YE . Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 2005; 307: 269–273.

    Article  CAS  PubMed  Google Scholar 

  46. Schuringa JJ, Schepers H, Vellenga E, Kruijer W . Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation. FEBS Lett 2001; 495: 71–76.

    Article  CAS  PubMed  Google Scholar 

  47. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA et al. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 1996; 93: 12969–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ebert BL, Bunn HF . Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol 1998; 18: 4089–4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruas JL, Berchner-Pfannschmidt U, Malik S, Gradin K, Fandrey J, Roeder RG et al. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J Biol Chem 2010; 285: 2601–2609.

    Article  CAS  PubMed  Google Scholar 

  50. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC . HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 2007; 11: 335–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jung JE, Kim HS, Lee CS, Shin YJ, Kim YN, Kang GH et al. STAT3 inhibits the degradation of HIF-1alpha by pVHL-mediated ubiquitination. Exp Mol Med 2008; 40: 479–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adachi M, Cui C, Dodge CT, Bhayani MK, Lai SY . Targeting STAT3 inhibits growth and enhances radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol 2012; 48: 1220–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu T, Li Y, Lin K, Yin H, He B, Zheng M et al. Regulation of S100A4 expression via the JAK2-STAT3 pathway in rhomboid-phenotype pulmonary arterial smooth muscle cells exposure to hypoxia. Int J Biochem Cell Biol 2012; 44: 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  54. Bai L, Yang JC, Ok JH, Mack PC, Kung HJ, Evans CP . Simultaneous targeting of Src kinase and receptor tyrosine kinase results in synergistic inhibition of renal cell carcinoma proliferation and migration. Int J Cancer 2012; 130: 2693–2702.

    Article  CAS  PubMed  Google Scholar 

  55. Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J, Kietzmann T et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell 2007; 18: 4691–4697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 2003; 22: 319–329.

    Article  CAS  PubMed  Google Scholar 

  57. Kim H, Baumann H . The carboxyl-terminal region of STAT3 controls gene induction by the mouse haptoglobin promoter. J Biol Chem 1997; 272: 14571–14579.

    Article  CAS  PubMed  Google Scholar 

  58. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604–4613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gleadle JM, Ratcliffe PJ . Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 1997; 89: 503–509.

    CAS  PubMed  Google Scholar 

  60. Wenger RH, Rolfs A, Marti HH, Bauer C, Gassmann M . Hypoxia, a novel inducer of acute phase gene expression in a human hepatoma cell line. J Biol Chem 1995; 270: 27865–27870.

    Article  CAS  PubMed  Google Scholar 

  61. Pawlus MR, Wang L, Ware K, Hu CJ . USF2 and HIF2alpha cooperatively activate HIF2 target genes during hypoxia. Mol Cell Biol 2012; 32: 4595–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM . Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev 2006; 20: 601–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (RO1CA134687, Hu) and Cancer Leagues of Colorado (Hu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-J Hu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlus, M., Wang, L. & Hu, CJ. STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene 33, 1670–1679 (2014). https://doi.org/10.1038/onc.2013.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.115

Keywords

This article is cited by

Search

Quick links