Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The growing complexity of HIF-1α’s role in tumorigenesis: DNA repair and beyond

Abstract

Lack of oxygen (hypoxia) is a central hallmark of cancer and a pivotal driving force of malignant progression. Transcriptional activators of the hypoxia-inducible factor α (HIFα) family represent the principal molecular mediators of hypoxia under both physiological and pathophysiological conditions. While HIF-2α is expressed in a tissue- and cell-type-restricted manner, stabilization of HIF-1α was reported in tumours of widely different origin, and functional analyses led to the perception of HIF-1α as an oncoprotein. In this review, we aim to acknowledge HIFα’s growing complexity by outlining its functional relevance for genomic integrity and tumour heterogeneity, two features of paramount importance for basic and clinical oncology. Pharmaceutical companies around the globe are ambitiously hunting for HIF-1α-inhibiting compounds, some of which are currently being evaluated in phase 1 trials. To avoid the rather disappointing clinical efficacy emblematic of most targeted therapeutics, potential resistance mechanisms of, as well as potential combination partners for, HIF-1α-inhibiting drugs should be evaluated. In this regard, the interrelation of HIF-1α with genomic integrity and tumour heterogeneity offers ample possibilities, potentially resulting in more efficient clinical translation of HIF-1α’s pathobiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Semenza GL . Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 2010; 29: 625–634.

    Article  CAS  PubMed  Google Scholar 

  2. Keith B, Johnson RS, Simon MC . HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2011; 12: 9–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang GL, Semenza GL . Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270: 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  4. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 2003; 17: 271–273.

    Article  CAS  PubMed  Google Scholar 

  6. Hu CJ, Sataur A, Wang L, Chen H, Simon MC . The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 2007; 18: 4528–4542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lau KW, Tian YM, Raval RR, Ratcliffe PJ, Pugh CW . Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br J Cancer 2007; 96: 1284–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 2001; 414: 550–554.

    Article  CAS  PubMed  Google Scholar 

  9. Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S et al. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 2003; 278: 11032–11040.

    Article  CAS  PubMed  Google Scholar 

  10. Semenza GL, Wang GL . A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12: 5447–5454.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sermeus A, Michiels C . Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2011; 2: e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Semenza GL . HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 2010; 20: 51–56.

    Article  CAS  PubMed  Google Scholar 

  13. Weidemann A, Johnson RS . Biology of HIF-1[alpha]. Cell Death Differ 2008; 15: 621–627.

    Article  CAS  PubMed  Google Scholar 

  14. Rohwer N, Cramer T . Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 2011; 14: 191–201.

    Article  CAS  PubMed  Google Scholar 

  15. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  17. Raza A, Franklin MJ, Dudek AZ . Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 2010; 85: 593–598.

    Article  CAS  PubMed  Google Scholar 

  18. Vaupel P, Mayer A, Hockel M . Tumor hypoxia and malignant progression. Methods Enzymol 2004; 381: 335–354.

    Article  CAS  PubMed  Google Scholar 

  19. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.

    Article  CAS  PubMed  Google Scholar 

  20. Frede S, Berchner-Pfannschmidt U, Fandrey J . Regulation of hypoxia-inducible factors during inflammation. Methods Enzymol 2007; 435: 405–419.

    CAS  PubMed  Google Scholar 

  21. Semenza GL . Oxygen sensing, homeostasis, and disease. N Engl J Med 2011; 365: 537–547.

    Article  CAS  PubMed  Google Scholar 

  22. Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003; 4: 133–146.

    Article  CAS  PubMed  Google Scholar 

  23. Daskalow K, Rohwer N, Raskopf E, Dupuy E, Kuhl A, Loddenkemper C et al. Role of hypoxia-inducible transcription factor 1alpha for progression and chemosensitivity of murine hepatocellular carcinoma. J Mol Med 2010; 88: 817–827.

    Article  CAS  PubMed  Google Scholar 

  24. Liao D, Corle C, Seagroves TN, Johnson RS . Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 2007; 67: 563–572.

    Article  CAS  PubMed  Google Scholar 

  25. Griffiths EA, Pritchard SA, Valentine HR, Whitchelo N, Bishop PW, Ebert MP et al. Hypoxia-inducible factor-1alpha expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas. Br J Cancer 2007; 96: 95–103.

    Article  CAS  PubMed  Google Scholar 

  26. Griffiths EA, Pritchard SA, McGrath SM, Valentine HR, Price PM, Welch IM et al. Hypoxia-associated markers in gastric carcinogenesis and HIF-2alpha in gastric and gastro-oesophageal cancer prognosis. Br J Cancer 2008; 98: 965–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 2006; 10: 413–423.

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15: 501–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nilsson H, Jogi A, Beckman S, Harris AL, Poellinger L, Pahlman S . HIF-2alpha expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia. Exp Cell Res 2005; 303: 447–456.

    Article  CAS  PubMed  Google Scholar 

  30. Agani FH, Pichiule P, Chavez JC, LaManna JC . The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem 2000; 275: 35863–35867.

    Article  CAS  PubMed  Google Scholar 

  31. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT . Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 1998; 95: 11715–11720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semenza GL . Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 2000; 59: 47–53.

    Article  CAS  PubMed  Google Scholar 

  33. Carling D . The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 2004; 29: 18–24.

    Article  CAS  PubMed  Google Scholar 

  34. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    Article  CAS  PubMed  Google Scholar 

  35. Rajendran JG, Mankoff DA, O'Sullivan F, Peterson LM, Schwartz DL, Conrad EU et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 2004; 10: 2245–2252.

    Article  CAS  PubMed  Google Scholar 

  36. Dang CV . Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 2010; 70: 859–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Denekamp J, Dasu A . Inducible repair and the two forms of tumour hypoxia--time for a paradigm shift. Acta Oncol 1999; 38: 903–918.

    Article  CAS  PubMed  Google Scholar 

  38. Evans SM, Hahn SM, Magarelli DP, Koch CJ . Hypoxic heterogeneity in human tumors: EF5 binding, vasculature, necrosis, and proliferation. Am J Clin Oncol 2001; 24: 467–472.

    Article  CAS  PubMed  Google Scholar 

  39. Vander Heiden MG . Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684.

    Article  CAS  PubMed  Google Scholar 

  40. Rohwer N, Dame C, Haugstetter A, Wiedenmann B, Detjen K, Schmitt CA et al. Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB. PLoS ONE 2010; 5: e12038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sendoel A, Kohler I, Fellmann C, Lowe SW, Hengartner MO . HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 2010; 465: 577–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Warburg O, Wind F, Negelein E . The metabolism of tumors in the body. J Gen Physiol 1927; 8: 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kallinowski F, Runkel S, Fortmeyer HP, Forster H, Vaupel P . L-glutamine: a major substrate for tumor cells in vivo? J Cancer Res Clin Oncol 1987; 113: 209–215.

    Article  CAS  PubMed  Google Scholar 

  44. Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer 2009; 8: 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Frezza C, Zheng L, Tennant DA, Papkovsky DB, Hedley BA, Kalna G et al. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS One 2011; 6: e24411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 2012; 483: 608–612.

    Article  CAS  PubMed  Google Scholar 

  47. Lord CJ, Ashworth A . The DNA damage response and cancer therapy. Nature 2012; 481: 287–294.

    Article  CAS  PubMed  Google Scholar 

  48. Yap TA, Sandhu SK, Carden CP, de Bono JS . Poly(ADP-ribose) polymerase (PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 2011; 61: 31–49.

    Article  PubMed  Google Scholar 

  49. Huen MS, Sy SM, Chen J . BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 2010; 11: 138–148.

    Article  CAS  PubMed  Google Scholar 

  50. Ciccia A, Elledge SJ . The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40: 179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang LE, Bindra RS, Glazer PM, Harris AL . Hypoxia-induced genetic instability--a calculated mechanism underlying tumor progression. J Mol Med (Berl) 2007; 85: 139–148.

    Article  CAS  Google Scholar 

  52. Bristow RG, Hill RP . Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008; 8: 180–192.

    Article  CAS  PubMed  Google Scholar 

  53. Brown JM . Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 1979; 52: 650–656.

    Article  CAS  PubMed  Google Scholar 

  54. Reinhold HS, Blachiwiecz B, Blok A . Oxygenation and reoxygenation in 'sandwich' tumours. Bibl Anat 1977; 15 (Pt 1): 270–272.

    Google Scholar 

  55. Yamaura H, Matsuzawa T . Tumor regrowth after irradiation; an experimental approach. Int J Radiat Biol Relat Stud Phys Chem Med 1979; 35: 201–219.

    Article  CAS  PubMed  Google Scholar 

  56. Chaplin DJ, Olive PL, Durand RE . Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987; 47: 597–601.

    CAS  PubMed  Google Scholar 

  57. Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch-Marce M, Kumar GK et al. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 2006; 577 (Pt 2): 705–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nanduri J, Wang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ et al. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci USA 2009; 106: 1199–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan G, Nanduri J, Bhasker CR, Semenza GL, Prabhakar NR . Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem 2005; 280: 4321–4328.

    Article  CAS  PubMed  Google Scholar 

  60. Dewhirst MW, Cao Y, Moeller B . Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008; 8: 425–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Medema RH, Macurek L . Checkpoint control and cancer. Oncogene 2012; 31: 2601–2613.

    Article  CAS  PubMed  Google Scholar 

  62. Bolderson E, Richard DJ, Zhou BB, Khanna KK . Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 2009; 15: 6314–6320.

    Article  CAS  PubMed  Google Scholar 

  63. Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 2004; 23: 1949–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kang HJ, Kim HJ, Rih JK, Mattson TL, Kim KW, Cho CH et al. BRCA1 plays a role in the hypoxic response by regulating HIF-1alpha stability and by modulating vascular endothelial growth factor expression. J Biol Chem 2006; 281: 13047–13056.

    Article  CAS  PubMed  Google Scholar 

  65. van der Groep P, Bouter A, Menko FH, van der WE, van Diest PJ . High frequency of HIF-1alpha overexpression in BRCA1 related breast cancer. Breast Cancer Res Treat 2008; 111: 475–480.

    Article  PubMed  CAS  Google Scholar 

  66. Wirthner R, Wrann S, Balamurugan K, Wenger RH, Stiehl DP . Impaired DNA double-strand break repair contributes to chemoresistance in HIF-1 alpha-deficient mouse embryonic fibroblasts. Carcinogenesis 2008; 29: 2306–2316.

    Article  CAS  PubMed  Google Scholar 

  67. Cam H, Easton JB, High A, Houghton PJ . mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 2010; 40: 509–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shall S, de Murcia G . Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 2000; 460: 1–15.

    Article  CAS  PubMed  Google Scholar 

  69. Martin-Oliva D, guilar-Quesada R, O'valle F, Munoz-Gamez JA, Martinez-Romero R, Garcia Del MR et al. Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis. Cancer Res 2006; 66: 5744–5756.

    Article  CAS  PubMed  Google Scholar 

  70. Elser M, Borsig L, Hassa PO, Erener S, Messner S, Valovka T et al. Poly(ADP-ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia-inducible factor-1-dependent gene expression. Mol Cancer Res 2008; 6: 282–290.

    Article  CAS  PubMed  Google Scholar 

  71. Martinez-Romero R, Martinez-Lara E, guilar-Quesada R, Peralta A, Oliver FJ, Siles E . PARP-1 modulates deferoxamine-induced HIF-1alpha accumulation through the regulation of nitric oxide and oxidative stress. J Cell Biochem 2008; 104: 2248–2260.

    Article  CAS  PubMed  Google Scholar 

  72. Artandi SE, DePinho RA . Telomeres and telomerase in cancer. Carcinogenesis 2010; 31: 9–18.

    Article  CAS  PubMed  Google Scholar 

  73. Schmitt CA . Cellular senescence and cancer treatment. Biochim Biophys Acta 2007; 1775: 5–20.

    CAS  PubMed  Google Scholar 

  74. Yatabe N, Kyo S, Maida Y, Nishi H, Nakamura M, Kanaya T et al. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene 2004; 23: 3708–3715.

    Article  CAS  PubMed  Google Scholar 

  75. Nishi H, Nakada T, Kyo S, Inoue M, Shay JW, Isaka K . Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol 2004; 24: 6076–6083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anderson CJ, Hoare SF, Ashcroft M, Bilsland AE, Keith WN . Hypoxic regulation of telomerase gene expression by transcriptional and post-transcriptional mechanisms. Oncogene 2006; 25: 61–69.

    Article  CAS  PubMed  Google Scholar 

  77. Coussens M, Davy P, Brown L, Foster C, Andrews WH, Nagata M et al. RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1alpha as critical for telomerase function in murine embryonic stem cells. Proc Natl Acad Sci USA 2010; 107: 13842–13847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wamelink MM, Struys EA, Jakobs C . The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis 2008; 31: 703–717.

    Article  CAS  PubMed  Google Scholar 

  79. Soucek T, Cumming R, Dargusch R, Maher P, Schubert D . The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 2003; 39: 43–56.

    Article  CAS  PubMed  Google Scholar 

  80. Guo S, Miyake M, Liu KJ, Shi H . Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment. J Neurochem 2009; 108: 1309–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baylin SB, Jones PA . A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 2011; 11: 726–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lukas J, Lukas C, Bartek J . More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 2011; 13: 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  83. Melvin A, Rocha S . Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012; 24: 35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang F, Zhang R, Wu X, Hankinson O . Roles of coactivators in hypoxic induction of the erythropoietin gene. PLoS One 2010; 5: e10002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Xenaki G, Ontikatze T, Rajendran R, Stratford IJ, Dive C, Krstic-Demonacos M et al. PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 2008; 27: 5785–5796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J et al. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 2005; 24: 3846–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yoo YG, Kong G, Lee MO . Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J 2006; 25: 1231–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Loenarz C, Schofield CJ . Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem Sci 2011; 36: 7–18.

    Article  CAS  PubMed  Google Scholar 

  89. Sullivan R, Graham CH . Hypoxia prevents etoposide-induced DNA damage in cancer cells through a mechanism involving hypoxia-inducible factor 1. Mol Cancer Ther 2009; 8: 1702–1713.

    Article  CAS  PubMed  Google Scholar 

  90. Lord CJ, Ashworth A . Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 2008; 8: 363–369.

    Article  CAS  PubMed  Google Scholar 

  91. Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 2008; 14: 435–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bertout JA, Majmundar AJ, Gordan JD, Lam JC, Ditsworth D, Keith B et al. HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc Natl Acad Sci USA 2009; 106: 14391–14396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Roberts AM, Watson IR, Evans AJ, Foster DA, Irwin MS, Ohh M . Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. Cancer Res 2009; 69: 9056–9064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Biswas S, Troy H, Leek R, Chung YL, Li JL, Raval RR et al. Effects of HIF-1alpha and HIF2alpha on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts. J Oncol 2010; 2010: 757908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Keith B, Johnson RS, Simon MC . HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2012; 12: 9–22.

    Article  CAS  Google Scholar 

  96. Rundqvist H, Johnson RS . Hypoxia and metastasis in breast cancer. Curr Top Microbiol Immunol 2010; 345: 121–139.

    CAS  PubMed  Google Scholar 

  97. Haase VH . Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int 2009; 76: 492–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brahimi-Horn MC, Bellot G, Pouyssegur J . Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev 2011; 21: 67–72.

    Article  CAS  PubMed  Google Scholar 

  99. Fojo T, Parkinson DR . Biologically targeted cancer therapy and marginal benefits: are we making too much of too little or are we achieving too little by giving too much? Clin Cancer Res 2010; 16: 5972–5980.

    Article  CAS  PubMed  Google Scholar 

  100. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  101. Bertheau P, Cazals-Hatem D, Meignin V, de RA, Verola O, Lesourd A et al. Variability of immunohistochemical reactivity on stored paraffin slides. J Clin Pathol 1998; 51: 370–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jacobs TW, Prioleau JE, Stillman IE, Schnitt SJ . Loss of tumor marker-immunostaining intensity on stored paraffin slides of breast cancer. J Natl Cancer Inst 1996; 88: 1054–1059.

    Article  CAS  PubMed  Google Scholar 

  103. Losso JN, Bawadi HA . Hypoxia inducible factor pathways as targets for functional foods. J Agric Food Chem 2005; 53: 3751–3768.

    Article  CAS  PubMed  Google Scholar 

  104. Calviello G, Di NF, Gragnoli S, Piccioni E, Serini S, Maggiano N et al. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 2004; 25: 2303–2310.

    Article  CAS  PubMed  Google Scholar 

  105. Palayoor ST, Tofilon PJ, Coleman CN . Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells. Clin Cancer Res 2003; 9: 3150–3157.

    CAS  PubMed  Google Scholar 

  106. Zhang Q, Tang X, Lu QY, Zhang ZF, Brown J, Le AD . Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1alpha and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Mol Cancer Ther 2005; 4: 1465–1474.

    Article  CAS  PubMed  Google Scholar 

  107. Thomas R, Kim MH . Epigallocatechin gallate inhibits HIF-1alpha degradation in prostate cancer cells. Biochem Biophys Res Commun 2005; 334: 543–548.

    Article  CAS  PubMed  Google Scholar 

  108. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simioni C et al. Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 2007; 72: 395–406.

    Article  CAS  PubMed  Google Scholar 

  109. Takiyama Y, Harumi T, Watanabe J, Fujita Y, Honjo J, Shimizu N et al. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism. Diabetes 2011; 60: 981–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van OE . Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 2002; 277: 27975–27981.

    Article  CAS  PubMed  Google Scholar 

  111. Liu L, Ning X, Sun L, Shi Y, Han S, Guo C et al. Involvement of MGr1-Ag/37LRP in the vincristine-induced HIF-1 expression in gastric cancer cells. Mol Cell Biochem 2007; 303: 151–160.

    Article  CAS  PubMed  Google Scholar 

  112. Lienard BM, Conejo-Garcia A, Stolze I, Loenarz C, Oldham NJ, Ratcliffe PJ et al. Evaluation of aspirin metabolites as inhibitors of hypoxia-inducible factor hydroxylases. Chem Commun (Camb ) 2008; 47: 6393–6395.

    Article  CAS  Google Scholar 

  113. Zhu XY, Daghini E, Chade AR, Lavi R, Napoli C, Lerman A et al. Disparate effects of simvastatin on angiogenesis during hypoxia and inflammation. Life Sci 2008; 83: 801–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rohwer N, Lobitz S, Daskalow K, Jons T, Vieth M, Schlag PM et al. HIF-1alpha determines the metastatic potential of gastric cancer cells. Br J Cancer 2009; 100: 772–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Cramer laboratory is supported by grants from the Deutsche Forschungsgemeinschaft, the Deutsche Krebshilfe, the Bundesministerium für Bildung und Forschung and (in collaboration) Cancer Research United Kingdom. Stefan Kempa received funding by the Bundesministerium für Bildung und Forschung and the Senate of Berlin. We thank the members of our laboratories and our collaborators for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Cramer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohwer, N., Zasada, C., Kempa, S. et al. The growing complexity of HIF-1α’s role in tumorigenesis: DNA repair and beyond. Oncogene 32, 3569–3576 (2013). https://doi.org/10.1038/onc.2012.510

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.510

Keywords

This article is cited by

Search

Quick links