Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells

Abstract

Epithelial ovarian cancer is the most lethal gynecological malignancy in the Western world. A major impediment for the successful treatment is the development of drug resistance. The molecular processes that contribute to resistance have been extensively studied; however, there is not much known about regulation by microRNAs (miRNAs). We compared miRNA expression profiles of an isogenic cisplatin-sensitive and -resistant ovarian cancer cell line pair (A2780/A2780 DDP) and found 27 miRNAs to be differentially expressed (2-fold). Five of these, including the family members miR-141/200c, showed a correlation with cisplatin sensitivity in the NCI-60 panel. Overexpression of miR-141 resulted in enhanced resistance to cisplatin in ovarian cancer cell lines. We next correlated the expression level of miR-141 in 132 primary ovarian tumors (108 serous and 24 non-serous) with response to platinum-based chemotherapy. Although no differences were observed in the serous tumors, miR-141 levels were higher in non-serous ovarian tumors that did not respond well to therapy (platinum-free interval <6 months). We demonstrate that miR-141 directly targets KEAP1, and that downregulation of KEAP1 induces cisplatin resistance. Conversely, overexpression of KEAP1 significantly enhanced cisplatin sensitivity. Expression of KEAP1 with its 3′-UTR, and a 3′-UTR in which the miR-141 target site has been mutated, revealed that miR-141 regulates KEAP1 upon exposure to cisplatin. Finally, we show that the NF-κB pathway, which can be regulated by KEAP1, is activated upon miR-141 overexpression, and that inhibition of this pathway partially reverses miR-141-mediated cisplatin resistance. These findings demonstrate that the miR-141-mediated regulation of KEAP1 has a crucial role in the cellular response to cisplatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ledermann JA, Marth C, Carey MS, Birrer M, Bowtell DD, Kaye S et al. Role of molecular agents and targeted therapy in clinical trials for women with ovarian cancer. Int J Gynecol Cancer 2011; 21: 763–770.

    Article  Google Scholar 

  2. Bast RC, Hennessy B, Mills GB . The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 2009; 9: 415–428.

    Article  CAS  Google Scholar 

  3. Ozols RF . Epithelial ovarian cancer. In: Hoskins WJYR, Markman M, Perez CA, Barakat R, Randall M, (eds). Principles and Practice of Gynaecologic Oncology. Lippincott Williams & Wilkins, Philadelphia, PA, 2005.

    Google Scholar 

  4. Ferlay J, Parkin DM, Steliarova-Foucher E . Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010; 46: 765–781.

    Article  CAS  Google Scholar 

  5. McLellan LI, Wolf CR . Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drug Resist Updat 1999; 2: 153–164.

    Article  CAS  Google Scholar 

  6. Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH, Wiemer EA . Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat 2011; 14: 22–34.

    Article  CAS  Google Scholar 

  7. Stewart DJ . Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 2007; 63: 12–31.

    Article  Google Scholar 

  8. Brozovic A, Osmak M . Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett 2007; 251: 1–16.

    Article  CAS  Google Scholar 

  9. Martin LP, Hamilton TC, Schilder RJ . Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 2008; 14: 1291–1295.

    Article  CAS  Google Scholar 

  10. Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008; 68: 425–433.

    Article  CAS  Google Scholar 

  11. Ye G, Fu G, Cui S, Zhao S, Bernaudo S, Bai Y et al. MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase 7: implications for chemoresistance. J Cell Sci 2011; 124: 359–368.

    Article  CAS  Google Scholar 

  12. Kong F, Sun C, Wang Z, Han L, Weng D, Lu Y et al. miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1. J Huazhong Univ Sci Technolog Med Sci 2011; 31: 543–549.

    Article  CAS  Google Scholar 

  13. Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008; 68: 10307–10314.

    Article  CAS  Google Scholar 

  14. Schmidt W, Chaney SG . Role of carrier ligand in platinum resistance of human carcinoma cell lines. Cancer Res 1993; 53: 799–805.

    CAS  Google Scholar 

  15. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 2007; 67: 2456–2468.

    Article  CAS  Google Scholar 

  16. Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z et al. MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 2007; 6: 1483–1491.

    Article  CAS  Google Scholar 

  17. Lee YS, Kim HK, Chung S, Kim KS, Dutta A . Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 2005; 280: 16635–16641.

    Article  CAS  Google Scholar 

  18. Friedlander M, Trimble E, Tinker A, Alberts D, Avall-Lundqvist E, Brady M et al. Clinical trials in recurrent ovarian cancer. Int J Gynecol Cancer 2011; 21: 771–775.

    Article  Google Scholar 

  19. Giudice A, Arra C, Turco MC . Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol Biol 2010; 647: 37–74.

    Article  CAS  Google Scholar 

  20. Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 2009; 36: 131–140.

    Article  CAS  Google Scholar 

  21. Kim JE, You DJ, Lee C, Ahn C, Seong JY, Hwang JI . Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation. Cell Signal 2010; 22: 1645–1654.

    Article  CAS  Google Scholar 

  22. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  Google Scholar 

  23. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    Article  CAS  Google Scholar 

  24. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  Google Scholar 

  25. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487–1495.

    Article  CAS  Google Scholar 

  26. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008; 14: 2690–2695.

    Article  CAS  Google Scholar 

  27. Wyman SK, Parkin RK, Mitchell PS, Fritz BR, O'Briant K, Godwin AK et al. Repertoire of microRNAs in epithelial ovarian cancer as determined by next generation sequencing of small RNA cDNA libraries. PLoS One 2009; 4: e5311.

    Article  Google Scholar 

  28. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67: 8699–8707.

    Article  CAS  Google Scholar 

  29. Gallagher MF, Flavin RJ, Elbaruni SA, Mc Inerney JK, Smyth PC, Salley YM et al. Regulation of microRNA biosynthesis and expression in 2102Ep embryonal carcinoma stem cells is mirrored in ovarian serous adenocarcinoma patients. J Ovarian Res 2009; 2: 19.

    Article  Google Scholar 

  30. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK . MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 2009; 8: 1055–1066.

    Article  CAS  Google Scholar 

  31. Cochrane DR, Howe EN, Spoelstra NS, Richer JK . Loss of miR-200c: A Marker of Aggressiveness and Chemoresistance in Female Reproductive Cancers. J Oncol 2010; 2010: 821717.

    Article  Google Scholar 

  32. Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O et al. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 2011; 17: 1627–1635.

    Article  CAS  Google Scholar 

  33. Eades G, Yang M, Yao Y, Zhang Y, Zhou Q . miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 2011; 286: 40725–40733.

    Article  CAS  Google Scholar 

  34. Imanaka Y, Tsuchiya S, Sato F, Shimada Y, Shimizu K, Tsujimoto G . MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J Hum Genet 2011; 56: 270–276.

    Article  CAS  Google Scholar 

  35. Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S, Grammatikos AP et al. Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res 2011; 71: 5081–5089.

    Article  CAS  Google Scholar 

  36. Pectasides D, Pectasides E, Psyrri A, Economopoulos T . Treatment issues in clear cell carcinoma of the ovary: a different entity? Oncologist 2006; 11: 1089–1094.

    Article  Google Scholar 

  37. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM et al. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 2001; 276: 20858–20865.

    Article  CAS  Google Scholar 

  38. Venugopal R, Jaiswal AK . Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 1998; 17: 3145–3156.

    Article  CAS  Google Scholar 

  39. Marini MG, Chan K, Casula L, Kan YW, Cao A, Moi P . hMAF, a small human transcription factor that heterodimerizes specifically with Nrf1 and Nrf2. J Biol Chem 1997; 272: 16490–16497.

    Article  CAS  Google Scholar 

  40. Wang Y, Devereux W, Stewart TM, Casero RA . Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N(1)-acetyltransferase gene. J Biol Chem 1999; 274: 22095–22101.

    Article  CAS  Google Scholar 

  41. Motohashi H, O’Connor T, Katsuoka F, Engel JD, Yamamoto M . Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 2002; 294: 1–12.

    Article  CAS  Google Scholar 

  42. Reichard JF, Motz GT, Puga A . Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res 2007; 35: 7074–7086.

    Article  CAS  Google Scholar 

  43. Campbell KJ, Witty JM, Rocha S, Perkins ND . Cisplatin mimics ARF tumor suppressor regulation of RelA (p65) nuclear factor-kappaB transactivation. Cancer Res 2006; 66: 929–935.

    Article  CAS  Google Scholar 

  44. Venkatraman M, Anto RJ, Nair A, Varghese M, Karunagaran D . Biological and chemical inhibitors of NF-kappaB sensitize SiHa cells to cisplatin-induced apoptosis. Mol Carcinog 2005; 44: 51–59.

    Article  CAS  Google Scholar 

  45. Eberle KE, Sansing HA, Szaniszlo P, Resto VA, Berrier AL . Carcinoma matrix controls resistance to cisplatin through talin regulation of NF-kB. PLoS ONE 2011; 6: e21496.

    Article  CAS  Google Scholar 

  46. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T et al. Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 2004; 279: 23477–23485.

    Article  CAS  Google Scholar 

  47. Pothof J, Verkaik NS, van IW, Wiemer EA, Ta VT, van der Horst GT et al. MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. Embo J 2009; 28: 2090–2099.

    Article  CAS  Google Scholar 

  48. Schmittgen TD, Livak KJ . Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101–1108.

    Article  CAS  Google Scholar 

  49. Devling TW, Lindsay CD, McLellan LI, McMahon M, Hayes JD . Utility of siRNA against Keap1 as a strategy to stimulate a cancer chemopreventive phenotype. Proc Natl Acad Sci USA 2005; 102: 7280–7285A.

    Article  CAS  Google Scholar 

  50. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB . Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987; 47: 936–942.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Kevin Scanlon (Keck Graduate Institute of Applied Life Sciences, Claremont, USA) for the kind gift of the cisplatin-sensitive/resistant A2780 cell line pair. We thank Mariël Brok and Kirsten Ruigrok-Ritstier for technical assistance, Andrea Sacchetti for FACS-sorting KEAP1-transfected cells and Herman Burger for critical comments on the manuscript. This project is supported by a grant from the Dutch Cancer Society EMCR 2007-3794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E A C Wiemer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Jaarsveld, M., Helleman, J., Boersma, A. et al. miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene 32, 4284–4293 (2013). https://doi.org/10.1038/onc.2012.433

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.433

Keywords

This article is cited by

Search

Quick links