Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin–ATP-binding cassette G2 signaling

Abstract

Cisplatin and paclitaxel are standard chemotherapy for metastatic ovarian cancer, but with limited efficacy. Cancer stem/progenitor cells (or tumor-initiating cells, TICs) are hypothesized to be chemoresistant, and the existence of TICs in ovarian cancer has been previously demonstrated. However, the key signals and molecular events regulating the formation and expansion of ovarian tumor-initiating cells (OTICs) remain elusive. Here, we show that c-Kit is not just a marker of OTICs, but also a critical mediator of the phenotype that can be a viable target for the treatment of ovarian cancer. In contrast to non-OICs, c-Kit was overexpressed in OTICs. Moreover, the use of small interfering RNA to inhibit c-Kit expression markedly attenuated the number and size of OTIC subpopulations, inhibited the expression of stem cell markers and decreased the tumorigenic capabilities of OTICs. Imatinib (Gleevec), a clinical drug that blocks c-Kit kinase activity, also demonstrated its inhibition potency on OTICs. In addition, cisplatin/paclitaxel, which killed non-OTICs, with c-Kit knockdown or imatinib revealed that this was critically required for intervening ovarian cancer progression and recurrence in vitro and in xenograft tumors in vivo. Similar results were obtained with OTICs derived from ovarian carcinoma patients. Studies into the mechanisms suggest an important role for the activation of Wnt/β-catenin and ATP-binding cassette G2 downstream of c-Kit. The tumor-promoting microenvironment, such as hypoxia, could promote OTICs via upregulation of c-Kit expression. These results unravel an integral role for c-Kit in ovarian neoplastic processes and shed light on its mechanisms of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics 2010 CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  2. Bast RC, Hennessy B, Mills GB . The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 2009; 9: 415–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bapat SA, Mali AM, Koppikar CB, Kurrey NK . Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 2005; 65: 3025–3029.

    Article  CAS  PubMed  Google Scholar 

  4. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 2006; 103: 11154–11159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68: 4311–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu L, McArthur C, Jaffe RB . Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 2010; 102: 1276–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stewart JM, Shaw PA, Gedye C, Bernardini MQ, Neel BG, Ailles LE . Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc Natl Acad Sci USA 2011; 108: 6468–6473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  9. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC . Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001; 22: 255–288.

    CAS  PubMed  Google Scholar 

  10. Schmandt RE, Broaddus R, Lu KH, Shvartsman H, Thornton A, Malpica A et al. Expression of c-ABL, c-KIT, and platelet-derived growth factor receptor-beta in ovarian serous carcinoma and normal ovarian surface epithelium. Cancer 2003; 98: 758–764.

    Article  CAS  PubMed  Google Scholar 

  11. Raspollini MR, Amunni G, Villanucci A, Baroni G, Taddei A, Taddei GL . c-KIT expression and correlation with chemotherapy resistance in ovarian carcinoma: an immunocytochemical study. Ann Oncol 2004; 15: 594–597.

    Article  CAS  PubMed  Google Scholar 

  12. Brustmann H . Immunohistochemical detection of human telomerase reverse transcriptase (hTERT) and c-kit in serous ovarian carcinoma: a clinicopathologic study. Gynecol Oncol 2005; 98: 396–402.

    Article  CAS  PubMed  Google Scholar 

  13. Alberts DS, Liu PY, Wilczynski SP, Jang A, Moon J, Ward JH et al. Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). Int J Gynecol Oncol 2007; 17: 784–788.

    Article  CAS  Google Scholar 

  14. Schilder RJ, Sill MW, Lee RB, Shaw TJ, Senterman MK, Klein-Szanto AJ et al. Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group Study. J Clin Oncol 2008; 26: 3418–3425.

    Article  CAS  PubMed  Google Scholar 

  15. Shaw TJ, Vanderhyden BC . AKT mediates the prosurvival effects of KIT in ovarian cancer cells and is a determinant of sensitivity to imatinib mesylate. Gynecol Oncol 2007; 105: 122–131.

    Article  CAS  PubMed  Google Scholar 

  16. Karlsson MO, Molnar V, Freijs A, Nygren P, Bergh J, Larsson R . Pharmacokinetic models for the saturable distribution of paclitaxel. Drug Metab Dispos 1999; 27: 1220–1223.

    CAS  PubMed  Google Scholar 

  17. Mutch DG, Williams S . Biology of epithelial ovarian cancer. Clin Obstet Gynecol 1994; 37: 406–422.

    Article  CAS  PubMed  Google Scholar 

  18. Wang GL, Semenza GL . Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 1993; 82: 3610–3615.

    CAS  PubMed  Google Scholar 

  19. Dean M, Fojo T, Bates S . Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 275–284.

    Article  CAS  PubMed  Google Scholar 

  20. Fodde R, Brabletz T . Wnt/β-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 2007; 19: 150–158.

    Article  CAS  PubMed  Google Scholar 

  21. Chien AJ, Conrad WH, Moon RT . A Wnt survival guide: from flies to human disease. J Invest Dermatol 2009; 129: 1614–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pon YL, Wong AS . Gonadotropin-induced apoptosis in human ovarian surface epithelial cells is associated with cyclooxygenase-2 up-regulation via the beta-catenin/T-cell factor signaling pathway. Mol Endocrinol 2006; 20: 3336–3350.

    Article  CAS  PubMed  Google Scholar 

  23. Molenaar M, van de Watering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86: 391–399.

    Article  CAS  PubMed  Google Scholar 

  24. Cheon S, Poon R, Yu C, Khoury M, Shenker R, Fish J et al. Prolonged beta-catenin stabilization and TCF-dependent transcriptional activation in hyperplastic cutaneous wounds. Lab Invest 2005; 85: 416–425.

    Article  CAS  PubMed  Google Scholar 

  25. Heinrich M, Dooley DC, Freed AC, Band L, Hoatlin ME, Keeble WW et al. Constitutive expression of steel factor gene by human stromal cells. Blood 1993; 82: 771–783.

    CAS  PubMed  Google Scholar 

  26. Broudy VC, Kovach NL, Bennett LG, Lin N, Jacobsen FW, Kidd PG . Human umbilical vein endothelial cells display high-affinity c-kit receptors and produce a soluble form of the c-kit receptor. Blood 1994; 83: 2145–2152.

    CAS  PubMed  Google Scholar 

  27. Coleman RL, Broaddus RR, Bodurka DC, Wolf JK, Burke TW, Kavanagh JJ et al. Phase II trial of imatinib mesylate in patients with recurrent platinum-and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecol Oncol 2006; 10: 126–131.

    Article  Google Scholar 

  28. Posadas EM, Kwitkowski V, Kotz HL, Espina V, Minasian L, Tchabo N et al. A prospective analysis of imatinib-incduced c-kit modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer 2007; 110: 309–317.

    Article  CAS  PubMed  Google Scholar 

  29. Matei D, Emerson RE, Schilder J, Menning N, Baldridge LA, Johnson CS et al. Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer 2008; 113: 723–732.

    Article  CAS  PubMed  Google Scholar 

  30. Deininger M, Buchdunger E, Druker BJ . The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640–2653.

    Article  CAS  PubMed  Google Scholar 

  31. Druker BJ . Efficacy and safety of a specific inhibitor of the Brc-Abl tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  32. Mundhenke C, Weigel MT, Sturner KH, Roesel F, Meinhold-Heerlein I, Bauerschlag DO et al. Novel treatment of ovarian cancer cell lines with Imatinib mesylate combined with Paclitaxel and Carboplatin leads to receptor-mediated antiproliferative effects. J Cancer Res Clin Oncol 2008; 134: 1397–1405.

    Article  CAS  PubMed  Google Scholar 

  33. Shield K, Ackland ML, Ahmed N, Rice CE . Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol Oncol 2009; 113: 143–148.

    Article  PubMed  Google Scholar 

  34. Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D et al. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol 2011; 91: 596–602.

    Article  CAS  PubMed  Google Scholar 

  35. Sattler M, Salgia R . Targeting c-Kit mutations: basic science to novel therapies. Leuk Res 2004; 28: S11–S20.

    Article  CAS  PubMed  Google Scholar 

  36. Norton L, Massague J . Is cancer a disease of self-seeding? Nat Med 2006; 12: 875–878.

    Article  CAS  PubMed  Google Scholar 

  37. Birner P, Schindl M, Obermair A, Breitenecker G, Oberhuber G . Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 2001; 7: 1661–1668.

    CAS  PubMed  Google Scholar 

  38. Nakayama K, Kanzaki A, Hata K, Katabuchi H, Okamura H, Miyazaki K et al. Hypoxia-inducible factor 1 alpha (HIF-1 alpha) gene expression in human ovarian carcinoma. Cancer Lett 2002; 176: 215–223.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson SW, Laub PB, Beesley JS, Ozols RF, Hamilton TC . Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cells. Cancer Res 1997; 57: 850–856.

    CAS  PubMed  Google Scholar 

  40. Tetsu O, McCormick F . β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  41. Bailey-Dell KJ, Hassel B, Doyle LA, Ross DD . Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 2001; 1520: 234–241.

    Article  CAS  PubMed  Google Scholar 

  42. Scotto KW . Transcriptional regulation of ABC drug transporters. Oncogene 2003; 22: 7496–7511.

    Article  CAS  PubMed  Google Scholar 

  43. Gamallo C, Palacios J, Moreno G, Calvo de Mora J, Suarez A, Armas A . Beta-catenin expression pattern in stage I and II ovarian carcinomas: relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. J Clin Pathol 1999; 155: 527–536.

    CAS  Google Scholar 

  44. Lee CM, Shvartsman H, Deavers MT, Wang SC, Xia W, Schmandt R et al. β-Catenin nuclear localization is associated with grade in ovarian serous carcinoma. Gynecol Oncol 2003; 88: 363–368.

    Article  CAS  PubMed  Google Scholar 

  45. Kildal W, Risberg B, Abeler VM, Kristensen GB, Sudbo J, Nesland JM et al. Beta-catenin expression, DNA ploidy and clinicopathological features in ovarian cancer: a study in 253 patients. Eur J Cancer 2005; 41: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  46. Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD et al. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res 2012; 18: 869–881.

    Article  CAS  PubMed  Google Scholar 

  47. Zajchowski DA, Karlan BY, Shawver LK . Treatment-related protein biomarker expression differs between primary and recurrent ovarian carcinomas. Mol Cancer Ther 2012; 11: 492–502.

    Article  CAS  PubMed  Google Scholar 

  48. Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 1999; 399: 798–802.

    Article  CAS  PubMed  Google Scholar 

  49. Roberts KG, Odell AF, Byrnes EM, Baleato RM, Griffith R, Lyons AB et al. Resistance to c-KIT kinase inhibitors conferred by V654A mutation. Mol Cancer Ther 2007; 6: 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  50. Wong AS, Gumbiner BM . Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol 2003; 161: 1191–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Health Research Institute of Taiwan (NHRI-EX100-9717NC) to H-C Lai, and by HKU Strategic Research Theme Fund on Cancer, CRCG (201109176078), CUHK8/CRF/11R, and Croucher Senior Research Fellowship to AST Wong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S T Wong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, W., Ip, C., Mak, A. et al. c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin–ATP-binding cassette G2 signaling. Oncogene 32, 2767–2781 (2013). https://doi.org/10.1038/onc.2012.290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.290

Keywords

This article is cited by

Search

Quick links