Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming

Abstract

Pluripotent cells can be derived from various types of somatic cells by nuclear reprogramming using defined transcription factors. It is, however, unclear whether human cancer cells can be similarly reprogrammed and subsequently terminally differentiated with abrogation of tumorigenicity. Here, using sarcomas we show that human-derived complex karyotype solid tumors: (1) can be reprogrammed into a pluripotent-like state as defined by all in vitro criteria used to define pluripotent stem cells generated from somatic cells; (2) can be terminally differentiated into mature connective tissue and red blood cells; and (3) terminal differentiation is accompanied with loss of both proliferation and tumorigenicity. We go on to perform the first global DNA promoter methylation and gene expression analyses comparing human cancers to their reprogrammed counterparts and report that reprogramming/differentiation results in significant epigenetic remodeling of oncogenes and tumor suppressors, while not significantly altering the differentiation status of the reprogrammed cancer cells, in essence dedifferentiating them to a state slightly before the mesenchymal stem cell differentiation stage. Our data demonstrate that direct nuclear reprogramming can restore terminal differentiation potential to human-derived cancer cells, with simultaneous loss of tumorigenicity, without the need to revert to an embryonic state. We anticipate that our models would serve as a starting point to more fully assess how nuclear reprogramming overcomes the multitude of genetic and epigenetic aberrancies inherent in human cancers to restore normal terminal differentiation pathways. Finally, these findings suggest that nuclear reprogramming may be a broadly applicable therapeutic strategy for the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jaenisch R, Young R . Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132: 567–582.

    Article  CAS  Google Scholar 

  2. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  Google Scholar 

  3. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al. In vitro reprogramming of fibroblasts into a pluripotent Es-cell-like state. Nature 2007; 448: 318–324.

    Article  CAS  Google Scholar 

  4. Lengner CJ . iPS cell technology in regenerative medicine. Ann N Y Acad Sci 2010; 1192: 38–44.

    Article  CAS  Google Scholar 

  5. Carette JE, Pruszak J, Varadarajan M, Blomen Va, Gokhale S, Camargo Fd et al. Generation of iPSCs from cultured human malignant cells. Blood 2010; 115: 4039–4042.

    Article  CAS  Google Scholar 

  6. Utikal J, Maherali N, Kulalert W, Hochedlinger K . Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 2009; 122 (Pt 19): 3502–3510.

    Article  CAS  Google Scholar 

  7. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 2009; 460: 1145–1148.

    Article  CAS  Google Scholar 

  8. Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci USA 2010; 107: 40–45.

    Article  CAS  Google Scholar 

  9. Tang Y, Kim M, Carrasco D, Kung Al, Chin L, Weissleder R . In vivo assessment of ras-dependent maintenance of tumor angiogenesis by real-time magnetic resonance imaging. Cancer Res 2005; 65: 8324–8330.

    Article  CAS  Google Scholar 

  10. Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 2004; 18: 1875–1885.

    Article  CAS  Google Scholar 

  11. Chang G, Miao Yl, Zhang Y, Liu S, Kou Z, Ding J et al. Linking incomplete reprogramming to the improved pluripotency of murine embryonal carcinoma cell-derived pluripotent stem cells. Plos One 2010; 5: E10320.

    Article  Google Scholar 

  12. Yu J, Vodyanik Ma, Smuga-Otto K, Antosiewicz-Bourget J, Frane Jl, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  Google Scholar 

  13. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  Google Scholar 

  14. Mills J, Hricik T, Siddiqi S, Matushansky I . Chromatin structure predicts epigenetic therapy responsiveness in sarcoma. Mol Cancer Ther 2011; 10: 313–324.

    Article  CAS  Google Scholar 

  15. Mills J, Matos T, Charytonowicz E, Hricik T, Castillo-Martin M, Remotti F et al. Characterization and comparison of the properties of sarcoma cell lines in vitro and in vivo. Hum Cell 2009; 22: 85–93.

    Article  Google Scholar 

  16. Krause U, Seckinger A, Gregory Ca . Assays of osteogenic differentiation by cultured human mesenchymal stem cells. Methods Mol Biol 2011; 698: 215–230.

    Article  CAS  Google Scholar 

  17. Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe Pt . Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci USA 2011; 108: 6503–6508.

    Article  CAS  Google Scholar 

  18. Lai Rc, Choo A, Lim Sk . Derivation and characterization of human ESC-derived mesenchymal stem cells. Methods Mol Biol 2011; 698: 141–150.

    Article  CAS  Google Scholar 

  19. Lu SJ, Feng Q, Park JS, Lanza R . Directed differentiation of red blood cells from human embryonic stem cells. Methods Mol Biol 2010; 636: 105–121.

    Article  Google Scholar 

  20. Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 2008; 112: 4475–4484.

    Article  CAS  Google Scholar 

  21. Merryweather-Clarke AT, Atzberger A, Soneji S, Gray N, Clark K, Waugh C et al. Global gene expression analysis of human erythroid progenitors. Blood 2011; 117: e96–e108.

    Article  CAS  Google Scholar 

  22. Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci USA 2008; 105: 13087–13092.

    Article  CAS  Google Scholar 

  23. Barrios C, Castresana JS, Kreicbergs A . Clinicopathologic correlations and short-term prognosis in musculoskeletal sarcoma with C-Myc oncogene amplification. Am J Clin Oncol 1994; 17: 273–276.

    Article  CAS  Google Scholar 

  24. Matushansky I, Hernando E, Socci ND, Mills JE, Matos TA, Edgar Ma et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 2007; 117: 3248–3257.

    Article  CAS  Google Scholar 

  25. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315–326.

    Article  CAS  Google Scholar 

  26. Spivakov M, Fisher AG . Epigenetic signatures of stem-cell identity. Nat Rev 2007; 8: 263–271.

    Article  CAS  Google Scholar 

  27. Ohm JE, Mcgarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39: 237–242.

    Article  CAS  Google Scholar 

  28. Koche RP, Smith ZD, Adli M, Gu H, Ku M, Gnirke A et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 2011; 8: 96–105.

    Article  CAS  Google Scholar 

  29. Stadtfeld M, Hochedlinger K. . Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24: 2239–2263.

    Article  CAS  Google Scholar 

  30. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  Google Scholar 

  31. Han J, Sachdev PS, Sidhu KS . A combined epigenetic and non-genetic approach for reprogramming human somatic cells. Plos One 2010; 5: E12297.

    Article  Google Scholar 

  32. Higgins ME, Claremont M, Major JE, Sander C, Lash AE . Cancergenes: a gene selection resource for cancer genome projects. Nucleic Acids Res 2007; 35: D721–D726.

    Article  CAS  Google Scholar 

  33. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008; 454: 49–55.

    Article  CAS  Google Scholar 

  34. Zhang B, Chen B, Wu T, Tan Y, Qiu S, Xuan Z et al. Estimating the quality of reprogrammed cells using ES cell differentiation expression patterns. Plos One 2011; 6: E15336.

    Article  CAS  Google Scholar 

  35. Matushansky I, Hernando E, Socci ND, Matos T, Mills J, Edgar MA et al. A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 2008; 172: 1069–1080.

    Article  CAS  Google Scholar 

  36. Glauche I, Moore K, Thielecke L, Horn K, Loeffler M, Roeder I . Stem cell proliferation and quiescence-two sides of the same coin. Plos Comput Biol 2009; 5: E1000447.

    Article  Google Scholar 

  37. Ogawa M, Porter PN, Nakahata T . Renewal and commitment to differentiation of hemopoietic stem cells (an interpretive review). Blood 1983; 61: 823–829.

    CAS  PubMed  Google Scholar 

  38. Giebel B, Punzel M . Lineage development of hematopoietic stem and progenitor cells. Biol Chem 2008; 389: 813–824.

    Article  CAS  Google Scholar 

  39. Siddiqi S, Mills J, Matushansky I . Epigenetic remodeling of chromatin architecture: exploring tumor differentiation therapies in mesenchymal stem cells and sarcomas. Curr Stem Cell Res Ther 2010; 5: 63–73.

    Article  CAS  Google Scholar 

  40. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101–112.

    Article  CAS  Google Scholar 

  41. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 2009; 41: 968–976.

    Article  CAS  Google Scholar 

  42. Okita K, Hong H, Takahashi K, Yamanaka S . Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 2010; 5: 418–428.

    Article  CAS  Google Scholar 

  43. Gore A, Li Z, Fung Hl, Young JE, Agarwal S, Antosiewicz-Bourget J et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471: 63–67.

    Article  CAS  Google Scholar 

  44. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E et al. Copy number variation and selection during reprogramming to pluripotency. Nature 2011; 471: 58–62.

    Article  CAS  Google Scholar 

  45. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011; 471: 68–73.

    Article  CAS  Google Scholar 

  46. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011; 8: 106–118.

    Article  CAS  Google Scholar 

  47. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010; 7: 521–531.

    Article  CAS  Google Scholar 

  48. Theunissen TW, Van Oosten AL, Castelo-Branco G, Hall J, Smith A, Silva JC . Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr Biol 2011; 21: 65–71.

    Article  CAS  Google Scholar 

  49. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A . Promotion of reprogramming to ground state pluripotency by signal inhibition. Plos Biol 2008; 6: E253.

    Article  Google Scholar 

  50. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010; 6: 71–79.

    Article  CAS  Google Scholar 

  51. Pitha-Rowe I, Petty WJ, Kitareewan S, Dmitrovsky E . Retinoid target genes in acute promyelocytic leukemia. Leukemia 2003; 17: 1723–1730.

    Article  CAS  Google Scholar 

  52. Charytonowicz E, Terry M, Coakley K, Telis L, Remotti F, Cordon-Cardo C et al. Ppargamma agonists enhance ET-743-induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma. J Clin Invest 2012; 122: 886–898.

    Article  CAS  Google Scholar 

  53. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 1998; 95: 3003–3007.

    Article  CAS  Google Scholar 

  54. Pomerantz JH, Mukherjee S, Palermo AT, Blau HM . Reprogramming to a muscle fate by fusion recapitulates differentiation. J Cell Sci 2009; 122 (Pt 7): 1045–1053.

    Article  CAS  Google Scholar 

  55. West FD, Machacek DW, Boyd Nl, Pandiyan K, Robbins KR, Stice SL . Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling. Stem Cells 2008; 26: 2768–2776.

    Article  CAS  Google Scholar 

  56. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7: 618–630.

    Article  CAS  Google Scholar 

  57. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 2008; 26: 1269–1275.

    Article  CAS  Google Scholar 

  58. Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 2010; 28: 1106–1114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank: Timothy C Wang MD for critical discussions and manuscript review; Sara Siddiqi and Gannie Tzonove for general technical assistance; Carlos Cordo-Cardo MD PhD for assistance with solid tumor pathological review and discussion; Benjamin Tycko MD PhD for assistance with DNA methylation analysis; Bachir Alobeid MD for assistance with hematological pathological review; Pavel Sumazin PhD for bioniformatic analysis. IM receives funding from NCI, Gerstner CDA and the Damon Runyon Cancer Research Fund.

Author contributions: XZ performed all experiments and assisted with experimental design. MT assisted with experiments and data interpretation. FDC assisted with experiments and data interpretation. FR reviewed and interpreted all histopathology outlined. IM designed the concept and experiments, interpreted the data and wrote the manuscript. IM receives funding from NCI, Gerstner CDA and the Damon Runyon Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Matushansky.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Cruz, F., Terry, M. et al. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32, 2249–2260 (2013). https://doi.org/10.1038/onc.2012.237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.237

Keywords

This article is cited by

Search

Quick links