Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies

Abstract

Cancer progression is characterized by rapidly proliferating cancer cells that are in need of increased protein synthesis. Therefore, enhanced endoplasmic reticulum (ER) activity is required to facilitate the folding, assembly and transportation of membrane and secretory proteins. These functions are carried out by ER chaperones. It is now becoming clear that the ER chaperones have critical functions outside of simply facilitating protein folding. For example, cancer progression requires glucose regulated protein (GRP) 78 for cancer cell survival and proliferation, as well as angiogenesis in the microenvironment. GRP78 can translocate to the cell surface acting as a receptor regulating oncogenic signaling and cell viability. Calreticulin, another ER chaperone, can translocate to the cell surface of apoptotic cancer cells and induce immunogenic cancer cell death and antitumor responses in vivo. Tumor-secreted GRP94 has been shown to elicit antitumor immune responses when used as antitumor vaccines. Protein disulfide isomerase is another ER chaperone that demonstrates pro-oncogenic and pro-survival functions. Because of intrinsic alterations of cellular metabolism and extrinsic factors in the tumor microenvironment, cancer cells are under ER stress, and they respond to this stress by activating the unfolded protein response (UPR). Depending on the severity and duration of ER stress, the signaling branches of the UPR can activate adaptive and pro-survival signals, or induce apoptotic cell death. The protein kinase RNA-like ER kinase signaling branch of the UPR has a dual role in cancer proliferation and survival, and is also required for ER stress-induced autophagy. The activation of the inositol-requiring kinase 1α branch promotes tumorigenesis, cancer cell survival and regulates tumor invasion. In summary, perturbance of ER homeostasis has critical roles in tumorigenesis, and therapeutic modulation of ER chaperones and/or UPR components presents potential antitumor treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rutkowski DT, Kaufman RJ . A trip to the ER: coping with stress. Trends Cell Biol 2004; 14: 20–28.

    CAS  PubMed  Google Scholar 

  2. Ron D, Walter P . Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519–529.

    CAS  PubMed  Google Scholar 

  3. Wu J, Kaufman RJ . From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 2006; 13: 374–384.

    CAS  PubMed  Google Scholar 

  4. Ni M, Lee AS . ER chaperones in mammalian development and human diseases. FEBS Lett 2007; 581: 3641–3651.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang M, Wey S, Zhang Y, Ye R, Lee AS . Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 2009; 11: 2307–2316.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Diehl JA, Fuchs SY, Koumenis C The cell biology of the unfolded protein response. Gastroenterology 2011; 141: 38–41, 41 e31-32.

    CAS  PubMed  Google Scholar 

  7. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92–96.

    CAS  PubMed  Google Scholar 

  8. Lee AH, Iwakoshi NN, Glimcher LH . XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23: 7448–7459.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell 2011; 22: 4390–4405.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 2007; 282: 4702–4710.

    CAS  PubMed  Google Scholar 

  11. Yorimitsu T, Klionsky DJ . Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy 2007; 3: 160–162.

    CAS  PubMed  Google Scholar 

  12. Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS . The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008; 15: 1460–1471.

    Article  CAS  PubMed  Google Scholar 

  13. Kruse KB, Brodsky JL, McCracken AA . Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 2006; 17: 203–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bernales S, McDonald KL, Walter P . Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 2006; 4: e423.

    PubMed  PubMed Central  Google Scholar 

  15. Momoi T . Conformational diseases and ER stress-mediated cell death: apoptotic cell death and autophagic cell death. Curr Mol Med 2006; 6: 111–118.

    CAS  PubMed  Google Scholar 

  16. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26: 9220–9231.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2007; 14: 230–239.

    CAS  PubMed  Google Scholar 

  18. Ma Y, Hendershot LM . The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004; 4: 966–977.

    CAS  PubMed  Google Scholar 

  19. Khan MM, Nomura T, Chiba T, Tanaka K, Yoshida H, Mori K et al. The fusion oncoprotein PML-RARalpha induces endoplasmic reticulum (ER)-associated degradation of N-CoR and ER stress. J Biol Chem 2004; 279: 11814–11824.

    CAS  PubMed  Google Scholar 

  20. Zhang Y, Soboloff J, Zhu Z, Berger SA . Inhibition of Ca2+ influx is required for mitochondrial reactive oxygen species-induced endoplasmic reticulum Ca2+ depletion and cell death in leukemia cells. Mol Pharmacol 2006; 70: 1424–1434.

    CAS  PubMed  Google Scholar 

  21. Tanimura A, Yujiri T, Tanaka Y, Hatanaka M, Mitani N, Nakamura Y et al. The anti-apoptotic role of the unfolded protein response in Bcr-Abl-positive leukemia cells. Leuk Res 2009; 33: 924–928.

    CAS  PubMed  Google Scholar 

  22. Rosati E, Sabatini R, Rampino G, De Falco F, Di Ianni M, Falzetti F et al. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood 2010; 116: 2713–2723.

    CAS  PubMed  Google Scholar 

  23. Wey S, Luo B, Tseng CC, Ni M, Zhou H, Fu Y et al. Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling. Blood 2012; 119: 817–825.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D et al. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One 2010; 5: e9575.

    PubMed  PubMed Central  Google Scholar 

  25. Pereira ER, Liao N, Neale GA, Hendershot LM . Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One 2010; 5: pii: e12521.

    PubMed  PubMed Central  Google Scholar 

  26. Brewer JW, Diehl JA . PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 2000; 97: 12625–12630.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ranganathan AC, Adam AP, Zhang L, Aguirre-Ghiso JA . Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol Ther 2006; 5: 729–735.

    CAS  PubMed  Google Scholar 

  28. Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M . Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci USA 2011; 108: 6561–6566.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fels DR, Ye J, Segan AT, Kridel SJ, Spiotto M, Olson M et al. Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer Res 2008; 68: 9323–9330.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 2011; 20: 400–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 2006; 4: e374.

    PubMed  PubMed Central  Google Scholar 

  32. Li J, Lee AS . Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 2006; 6: 45–54.

    CAS  PubMed  Google Scholar 

  33. Lee AS . GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 2007; 67: 3496–3499.

    CAS  PubMed  Google Scholar 

  34. Pfaffenbach KT, Lee AS . The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol 2011; 23: 150–156.

    CAS  PubMed  Google Scholar 

  35. Kern J, Untergasser G, Zenzmaier C, Sarg B, Gastl G, Gunsilius E et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood 2009; 114: 3960–3967.

    CAS  PubMed  Google Scholar 

  36. Ni M, Zhang Y, Lee AS . Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 2011; 434: 181–188.

    CAS  PubMed  Google Scholar 

  37. Ouyang YB, Xu LJ, Emery JF, Lee AS, Giffard RG . Overexpressing GRP78 influences Ca2+ handling and function of mitochondria in astrocytes after ischemia-like stress. Mitochondrion 2011; 11: 279–286.

    CAS  PubMed  Google Scholar 

  38. Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS . The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 2007; 67: 9809–9816.

    CAS  PubMed  Google Scholar 

  39. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS . Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 2003; 278: 20915–20924.

    CAS  PubMed  Google Scholar 

  40. Fu Y, Li J, Lee AS . GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen-starvation induced apoptosis. Cancer Res 2007; 67: 3734–3740.

    CAS  PubMed  Google Scholar 

  41. Zhou H, Zhang Y, Fu Y, Chan L, Lee AS . Novel mechanism of anti-apoptotic function of 78 kDa glucose-regulated protein (GRP78). J Biol Chem 2011; 286: 25687–25696.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 2002; 514: 122–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Penas C, Font-Nieves M, Fores J, Petegnief V, Planas A, Navarro X et al. Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ 2011; 18: 1617–1627.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS . The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 2005; 4: 443–449.

    CAS  PubMed  Google Scholar 

  45. Oppermann M, Geilen CC, Fecker LF, Gillissen B, Daniel PT, Eberle J . Caspase-independent induction of apoptosis in human melanoma cells by the proapoptotic Bcl-2-related protein Nbk/ Bik. Oncogene 2005; 24: 7369–7380.

    CAS  PubMed  Google Scholar 

  46. Luo S, Mao C, Lee B, Lee AS . GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 2006; 26: 5688–5697.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 2008; 68: 498–505.

    CAS  PubMed  Google Scholar 

  48. Zhang Y, Liu R, Ni M, Gill P, Lee AS . Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J Biol Chem 2010; 285: 15065–15075.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV . GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal 2009; 11: 2299–2306.

    CAS  PubMed  Google Scholar 

  50. Misra UK, Payne S, Pizzo SV . Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop: a role for secreted prostate-specific antigen. J Biol Chem 2011; 286: 1248–1259.

    CAS  PubMed  Google Scholar 

  51. Shani G, Fischer WH, Justice NJ, Kelber JA, Vale W, Gray PC . GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol 2008; 28: 666–677.

    CAS  PubMed  Google Scholar 

  52. Miharada K, Karlsson G, Rehn M, Rorby E, Siva K, Cammenga J et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 2011; 9: 330–344.

    CAS  PubMed  Google Scholar 

  53. Pootrakul L, Datar RH, Shi SR, Cai J, Hawes D, Groshen SG et al. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin Cancer Res 2006; 12: 5987–5993.

    CAS  PubMed  Google Scholar 

  54. Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol 2007; 38: 1547–1552.

    CAS  PubMed  Google Scholar 

  55. Zhuang L, Scolyer RA, Lee CS, McCarthy SW, Cooper WA, Zhang XD et al. Expression of glucose-regulated stress protein GRP78 is related to progression of melanoma. Histopathology 2009; 54: 462–470.

    PubMed  Google Scholar 

  56. Wu MJ, Jan CI, Tsay YG, Yu YH, Huang CY, Lin SC et al. Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling. Mol Cancer 2010; 9: 283.

    PubMed  PubMed Central  Google Scholar 

  57. Tan SS, Ahmad I, Bennett HL, Singh L, Nixon C, Seywright M et al. GRP78 up-regulation is associated with androgen receptor status, Hsp70-Hsp90 client proteins and castrate-resistant prostate cancer. J Pathol 2011; 223: 81–87.

    CAS  PubMed  Google Scholar 

  58. Jamora C, Dennert G, Lee AS. . Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA 1996; 93: 7690–7694.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu Y, Wey S, Wang M, Ye R, Liao CP, Roy-Burman P et al. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc Natl Acad Sci USA 2008; 105: 19444–19449.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bartkowiak K, Effenberger KE, Harder S, Andreas A, Buck F, Peter-Katalinic J et al. Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J Proteome Res 2010; 9: 3158–3168.

    CAS  PubMed  Google Scholar 

  61. Ota J, Yamashita Y, Okawa K, Kisanuki H, Fujiwara S, Ishikawa M et al. Proteomic analysis of hematopoietic stem cell-like fractions in leukemic disorders. Oncogene 2003; 22: 5720–5728.

    CAS  PubMed  Google Scholar 

  62. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    CAS  PubMed  Google Scholar 

  63. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    CAS  PubMed  Google Scholar 

  64. Misra UK, Pizzo SV . Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells. Cancer Biol Ther 2010; 9: 142–152.

    CAS  PubMed  Google Scholar 

  65. Verras M, Papandreou I, Lim AL, Denko NC . Tumor hypoxia blocks Wnt processing and secretion through the induction of endoplasmic reticulum stress. Mol Cell Biol 2008; 28: 7212–7224.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Konopleva M, Zhao S, Hu W, Jiang S, Snell V, Weidner D et al. The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol 2002; 118: 521–534.

    CAS  PubMed  Google Scholar 

  67. Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H et al. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br J Haematol 2011; 153: 741–752.

    CAS  PubMed  Google Scholar 

  68. Virrey JJ, Dong D, Stiles C, Patterson JB . Pen L, Ni M et al. Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells. Mol Cancer Res 2008; 6: 1268–1275.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong D, Stapleton C, Luo B, Xiong S, Ye W, Zhang Y et al. A critical role for GRP78/BiP in the tumor microenvironment for neovascularization during tumor growth and metastasis. Cancer Res 2011; 71: 2848–2857.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Katanasaka Y, Ishii T, Asai T, Naitou H, Maeda N, Koizumi F et al. Cancer antineovascular therapy with liposome drug delivery systems targeted to BiP/GRP78. Int J Cancer 2010; 127: 2685–2698.

    CAS  PubMed  Google Scholar 

  71. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS . Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15: 232–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15: 220–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dong D, Dubeau L, Bading J, Nguyen K, Luna M, Yu H et al. Spontaneous and controllable activation of suicide gene expression driven by the stress-inducible grp78 promoter resulting in eradication of sizable human tumors. Hum Gene Ther 2004; 15: 553–561.

    CAS  PubMed  Google Scholar 

  74. Dong D, Ko B, Baumeister P, Swenson S, Costa F, Markland F et al. Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res 2005; 65: 5785–5791.

    CAS  PubMed  Google Scholar 

  75. Glozak MA, Seto E . Histone deacetylases and cancer. Oncogene 2007; 26: 5420–5432.

    CAS  PubMed  Google Scholar 

  76. Baumeister P, Dong D, Fu Y, Lee AS . Transcriptional induction of GRP78/BiP by histone deacetylase inhibitors and resistance to histone deacetylase inhibitor-induced apoptosis. Mol Cancer Ther 2009; 8: 1086–1094.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    CAS  PubMed  Google Scholar 

  78. Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, Ma WY et al. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 2006; 66: 9260–9269.

    CAS  PubMed  Google Scholar 

  79. Ni M, Zhou H, Wey S, Baumeister P, Lee AS . Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP. PLoS One 2009; 4: e6868.

    PubMed  PubMed Central  Google Scholar 

  80. Yu DH, Macdonald J, Liu G, Lee AS, Ly M, Davis T et al. Pyrvinium targets the unfolded protein response to hypoglycemia and its anti-tumor activity is enhanced by combination therapy. PLoS One 2008; 3: e3951.

    PubMed  PubMed Central  Google Scholar 

  81. Backer JM, Krivoshein AV, Hamby CV, Pizzonia J, Gilbert KS, Ray YS et al. Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia 2009; 11: 1165–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li M, Wang J, Jing J, Hua H, Luo T, Xu L et al. Synergistic promotion of breast cancer cells death by targeting molecular chaperone GRP78 and heat shock protein 70. J Cell Mol Med 2009; 13: 4540–4550.

    CAS  PubMed  Google Scholar 

  83. Kim JY, Hwang JH, Cha MR, Yoon MY, Son ES, Tomida A et al. Arctigenin blocks the unfolded protein response and shows therapeutic antitumor activity. J Cell Physiol 2010; 224: 33–40.

    CAS  PubMed  Google Scholar 

  84. Martin S, Hill DS, Paton JC, Paton AW, Birch-Machin MA, Lovat PE et al. Targeting GRP78 to enhance melanoma cell death. Pigment Cell Melanoma Res 2010; 23: 675–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Roue G, Perez-Galan P, Mozos A, Lopez-Guerra M, Xargay-Torrent S, Rosich L et al. The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood 2011; 117: 1270–1279.

    CAS  PubMed  Google Scholar 

  86. Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 2004; 6: 275–284.

    CAS  PubMed  Google Scholar 

  87. Kim Y, Lillo AM, Steiniger SC, Liu Y, Ballatore C, Anichini A et al. Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 2006; 45: 9434–9444.

    CAS  PubMed  Google Scholar 

  88. Liu Y, Steiniger SC, Kim Y, Kaufmann GF, Felding-Habermann B, Janda KD . Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Mol Pharm 2007; 4: 435–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sato M, Yao VJ, Arap W, Pasqualini R. . GRP78 signaling hub a receptor for targeted tumor therapy. Adv Genet 2010; 69: 97–114.

    CAS  PubMed  Google Scholar 

  90. Jakobsen CG, Rasmussen N, Laenkholm AV, Ditzel HJ . Phage display derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78. Cancer Res 2007; 67: 9507–9517.

    CAS  PubMed  Google Scholar 

  91. Rauschert N, Brandlein S, Holzinger E, Hensel F, Muller-Hermelink HK, Vollmers HP . A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab Invest 2008; 88: 375–386.

    CAS  PubMed  Google Scholar 

  92. Johnson S, Michalak M, Opas M, Eggleton P . The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol 2001; 11: 122–129.

    CAS  PubMed  Google Scholar 

  93. Gelebart P, Opas M, Calreticulin Michalak M. . a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 2005; 37: 260–266.

    CAS  PubMed  Google Scholar 

  94. Caramelo JJ, Parodi AJ. . Getting in and out from calnexin/calreticulin cycles. J Biol Chem 2008; 283: 10221–10225.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Michalak M, Groenendyk J, Szabo E, Gold LI, Calreticulin Opas M . A multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 2009; 417: 651–666.

    CAS  PubMed  Google Scholar 

  96. Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM et al. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 2010; 24: 665–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 2007; 14: 1848–1850.

    CAS  PubMed  Google Scholar 

  98. Martins I, Kepp O, Galluzzi L, Senovilla L, Schlemmer F, Adjemian S et al. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann NY Acad Sci 2010; 1209: 77–82.

    CAS  PubMed  Google Scholar 

  99. Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L et al. Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from ‘silent’ to immunogenic. Cancer Res 2007; 67: 7941–7944.

    CAS  PubMed  Google Scholar 

  100. Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010; 2: 63ra94.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wemeau M, Kepp O, Tesniere A, Panaretakis T, Flament C, De Botton S et al. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis 2010; 1: e104.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Obeid M, Tesniere A, Panaretakis T, Tufi R, Joza N, van Endert P et al. Ecto-calreticulin in immunogenic chemotherapy. Immunol Rev 2007; 220: 22–34.

    CAS  PubMed  Google Scholar 

  103. Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 2011; 30: 1147–1158.

    CAS  PubMed  Google Scholar 

  104. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 2009; 28: 578–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Obeid M . ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J Immunol 2008; 181: 2533–2543.

    CAS  PubMed  Google Scholar 

  106. Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 2008; 15: 1499–1509.

    CAS  PubMed  Google Scholar 

  107. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54–61.

    CAS  PubMed  Google Scholar 

  108. Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA et al. p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 1997; 139: 327–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Podack ER, Raez LE . Allogeneic tumor-cell-based vaccines secreting endoplasmic reticulum chaperone gp96. Expert Opin Biol Ther 2007; 7: 1679–1688.

    CAS  PubMed  Google Scholar 

  110. Strbo N, Podack ER . Secreted heat shock protein gp96-Ig: an innovative vaccine approach. Am J Reprod Immunol 2008; 59: 407–416.

    CAS  PubMed  Google Scholar 

  111. di Pietro A, Tosti G, Ferrucci PF, Testori A . The immunological era in melanoma treatment: new challenges for heat shock protein-based vaccine in the advanced disease. Expert Opin Biol Ther 2011; 11: 1395–1407.

    CAS  PubMed  Google Scholar 

  112. Baker-LePain JC, Sarzotti M, Fields TA, Li CY, Nicchitta CV . GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J Exp Med 2002; 196: 1447–1459.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu S, Wang H, Yang Z, Kon T, Zhu J, Cao Y et al. Enhancement of cancer radiation therapy by use of adenovirus-mediated secretable glucose-regulated protein 94/gp96 expression. Cancer Res 2005; 65: 9126–9131.

    CAS  PubMed  Google Scholar 

  114. Schreiber TH, Deyev VV, Rosenblatt JD, Podack ER . Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res 2009; 69: 2026–2033.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Qian J, Hong S, Wang S, Zhang L, Sun L, Wang M et al. Myeloma cell line-derived, pooled heat shock proteins as a universal vaccine for immunotherapy of multiple myeloma. Blood 2009; 114: 3880–3889.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pakravan N, Hassan ZM . Comparison of adjuvant activity of N- and C-terminal domain of gp96 in a Her2-positive breast cancer model. Cell Stress Chaperones 2011; 16: 449–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pakravan N, Hashemi SM, Hassan ZM . Adjuvant activity of GP96 C-terminal domain towards Her2/neu DNA vaccine is fusion direction-dependent. Cell Stress Chaperones 2011; 16: 41–48.

    CAS  PubMed  Google Scholar 

  118. Oki Y, McLaughlin P, Fayad LE, Pro B, Mansfield PF, Clayman GL et al. Experience with heat shock protein-peptide complex 96 vaccine therapy in patients with indolent non-Hodgkin lymphoma. Cancer 2007; 109: 77–83.

    CAS  PubMed  Google Scholar 

  119. Testori A, Richards J, Whitman E, Mann GB, Lutzky J, Camacho L et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 2008; 26: 955–962.

    CAS  PubMed  Google Scholar 

  120. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 2008; 372: 145–154.

    CAS  PubMed  Google Scholar 

  121. Eton O, Ross MI, East MJ, Mansfield PF, Papadopoulos N, Ellerhorst JA et al. Autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96) in patients with metastatic melanoma. J Transl Med 2010; 8: 9.

    PubMed  PubMed Central  Google Scholar 

  122. Tamura Y, Hirohashi Y, Kutomi G, Nakanishi K, Kamiguchi K, Torigoe T et al. Tumor-produced secreted form of binding of immunoglobulin protein elicits antigen-specific tumor immunity. J Immunol 2011; 186: 4325–4330.

    CAS  PubMed  Google Scholar 

  123. Gong J, Zhang Y, Durfee J, Weng D, Liu C, Koido S et al. A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use. J Immunol 2010; 184: 488–496.

    CAS  PubMed  Google Scholar 

  124. Ren F, Xu Y, Mao L, Ou R, Ding Z, Zhang X et al. Heat shock protein 110 improves the antitumor effects of the cytotoxic T lymphocyte epitope E7(49-57) in mice. Cancer Biol Ther 2010; 9: 134–141.

    CAS  PubMed  Google Scholar 

  125. Wang XY, Sun X, Chen X, Facciponte J, Repasky EA, Kane J et al. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. J Immunol 2010; 184: 6309–6319.

    CAS  PubMed  Google Scholar 

  126. Qian J, Yi H, Guo C, Yu X, Zuo D, Chen X et al. CD204 suppresses large heat shock protein-facilitated priming of tumor antigen gp100-specific T cells and chaperone vaccine activity against mouse melanoma. J Immunol 2011; 187: 2905–2914.

    CAS  PubMed  Google Scholar 

  127. Guo QY, Yuan M, Peng J, Cui XM, Song G, Sui X et al. Antitumor activity of mixed heat shock protein/peptide vaccine and cyclophosphamide plus interleukin-12 in mice sarcoma. J Exp Clin Cancer Res 2011; 30: 24.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Noiva R . Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 1999; 10: 481–493.

    CAS  PubMed  Google Scholar 

  129. Ellgaard L . The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 2005; 6: 28–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ . Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 2006; 31: 455–464.

    CAS  PubMed  Google Scholar 

  131. Turano C, Coppari S, Altieri F, Ferraro A . Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 2002; 193: 154–163.

    CAS  PubMed  Google Scholar 

  132. Ko HS, Uehara T, Nomura Y . Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. J Biol Chem 2002; 277: 35386–35392.

    CAS  PubMed  Google Scholar 

  133. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006; 441: 513–517.

    CAS  PubMed  Google Scholar 

  134. Lovat PE, Corazzari M, Armstrong JL, Martin S, Pagliarini V, Hill D et al. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res 2008; 68: 5363–5369.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Goplen D, Wang J, Enger PO, Tysnes BB, Terzis AJ, Laerum OD et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res 2006; 66: 9895–9902.

    CAS  PubMed  Google Scholar 

  136. Haefliger S, Klebig C, Schaubitzer K, Schardt J, Timchenko N, Mueller BU et al. Protein disulfide isomerase blocks CEBPA translation and is up-regulated during the unfolded protein response in AML. Blood 2011; 117: 5931–5940.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Fonseca C, Soiffer R, Ho V, Vanneman M, Jinushi M, Ritz J et al. Protein disulfide isomerases are antibody targets during immune-mediated tumor destruction. Blood 2009; 113: 1681–1688.

    PubMed  PubMed Central  Google Scholar 

  138. Schroder M, Kaufman RJ . Divergent roles of IRE1alpha and PERK in the unfolded protein response. Curr Mol Med 2006; 6: 5–36.

    CAS  PubMed  Google Scholar 

  139. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D . Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5: 897–904.

    CAS  PubMed  Google Scholar 

  140. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA . Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 2003; 23: 7198–7209.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cullinan SB, Diehl JA . PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 2004; 279: 20108–20117.

    CAS  PubMed  Google Scholar 

  142. Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 2002; 22: 3864–3874.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wei J, Sheng X, Feng D, McGrath B, Cavener DR . PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol 2008; 217: 693–707.

    CAS  PubMed  Google Scholar 

  144. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7: 1153–1163.

    CAS  PubMed  Google Scholar 

  145. Zhang W, Feng D, Li Y, Iida K, McGrath B, Cavener DR . PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab 2006; 4: 491–497.

    CAS  PubMed  Google Scholar 

  146. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 2005; 24: 3470–3481.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 2006; 26: 9517–9532.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gupta S, McGrath B, Cavener DR . PERK regulates the proliferation and development of insulin-secreting beta-cell tumors in the endocrine pancreas of mice. PLoS One 2009; 4: e8008.

    PubMed  PubMed Central  Google Scholar 

  149. Hamanaka RB, Bennett BS, Cullinan SB, PERK Diehl JA . and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 2005; 16: 5493–5501.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu Y, Laszlo C, Liu W, Chen X, Evans SC, Wu S . Regulation of G(1) arrest and apoptosis in hypoxia by PERK and GCN2-mediated eIF2alpha phosphorylation. Neoplasia 2010; 12: 61–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 2010; 29: 2082–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2010; 120: 127–141.

    CAS  PubMed  Google Scholar 

  153. Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L et al. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 2010; 29: 4424–4435.

    CAS  PubMed  Google Scholar 

  154. Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 2011; 31: 3616–3629.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Schewe DM, Aguirre-Ghiso JA . Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 2009; 69: 1545–1552.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Donze O, Jagus R, Koromilas AE, Hershey JW, Sonenberg N . Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J 1995; 14: 3828–3834.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Perkins DJ, Barber GN . Defects in translational regulation mediated by the alpha subunit of eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the malignant transformation of human fibroblasts. Mol Cell Biol 2004; 24: 2025–2040.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sequeira SJ, Ranganathan AC, Adam AP, Iglesias BV, Farias EF, Aguirre-Ghiso JA . Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation. PLoS ONE 2007; 2: e615.

    PubMed  PubMed Central  Google Scholar 

  159. Ranganathan AC, Ojha S, Kourtidis A, Conklin DS, Aguirre-Ghiso JA . Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res 2008; 68: 3260–3268.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C et al. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 2010; 29: 3881–3895.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yorimitsu T, Nair U, Yang Z, Klionsky DJ . Endoplasmic reticulum stress triggers autophagy. J Biol Chem 2006; 281: 30299–30304.

    CAS  PubMed  Google Scholar 

  162. Hoyer-Hansen M, Jaattela M . Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 2007; 14: 1576–1582.

    CAS  PubMed  Google Scholar 

  163. Kim KW, Moretti L, Mitchell LR, Jung DK, Lu B . Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2alpha in caspase-3/7-deficient cells. Oncogene 2010; 29: 3241–3251.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Milani M, Rzymski T, Mellor HR, Pike L, Bottini A, Generali D et al. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res 2009; 69: 4415–4423.

    CAS  PubMed  Google Scholar 

  165. Koong AC, Chauhan V, Romero-Ramirez L . Targeting XBP-1 as a novel anti-cancer strategy. Cancer Biol Ther 2006; 5: 756–759.

    CAS  PubMed  Google Scholar 

  166. Yoshida H . Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid Redox Signal 2007; 9: 2323–2333.

    CAS  PubMed  Google Scholar 

  167. Glimcher LH . XBP1: the last two decades. Ann Rheum Dis 2010; 69(Suppl 1): i67–i71.

    CAS  PubMed  Google Scholar 

  168. Zhang K, Wong HN, Song B, Miller CN, Scheuner D, Kaufman RJ . The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest 2005; 115: 268–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Fujimoto T, Yoshimatsu K, Watanabe K, Yokomizo H, Otani T, Matsumoto A et al. Overexpression of human X-box binding protein 1 (XBP-1) in colorectal adenomas and adenocarcinomas. Anticancer Res 2007; 27: 127–131.

    CAS  PubMed  Google Scholar 

  170. Davies MP, Barraclough DL, Stewart C, Joyce KA, Eccles RM, Barraclough R et al. Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int J Cancer 2008; 123: 85–88.

    CAS  PubMed  Google Scholar 

  171. Maestre L, Tooze R, Canamero M, Montes-Moreno S, Ramos R, Doody G et al. Expression pattern of XBP1(S) in human B-cell lymphomas. Haematologica 2009; 94: 419–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 2004; 64: 5943–5947.

    CAS  PubMed  Google Scholar 

  173. Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC et al. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J 2007; 21: 4013–4027.

    CAS  PubMed  Google Scholar 

  174. Hsiao JR, Chang KC, Chen CW, Wu SY, Su IJ, Hsu MC et al. Endoplasmic reticulum stress triggers XBP-1-mediated up-regulation of an EBV oncoprotein in nasopharyngeal carcinoma. Cancer Res 2009; 69: 4461–4467.

    CAS  PubMed  Google Scholar 

  175. Carrasco DR, Sukhdeo K, Protopopova M, Sinha R, Enos M, Carrasco DE et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 2007; 11: 349–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Thorpe JA, Schwarze SR . IRE1alpha controls cyclin A1 expression and promotes cell proliferation through XBP-1. Cell Stress Chaperones 2010; 15: 497–508.

    CAS  PubMed  Google Scholar 

  177. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M et al. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 2010; 107: 15553–15558.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 2007; 67: 6700–6707.

    CAS  PubMed  Google Scholar 

  179. Romero-Ramirez L, Cao H, Regalado MP, Kambham N, Siemann D, Kim JJ et al. X box-binding protein 1 regulates angiogenesis in human pancreatic adenocarcinomas. Transl Oncol 2009; 2: 31–38.

    PubMed  PubMed Central  Google Scholar 

  180. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009; 138: 562–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Hollien J, Weissman JS . Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 2006; 313: 104–107.

    CAS  PubMed  Google Scholar 

  182. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS . Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 2009; 186: 323–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 2011; 117: 1311–1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Mahoney DJ, Lefebvre C, Allan K, Brun J, Sanaei CA, Baird S et al. Virus-tumor interactome screen reveals ER stress response can reprogram resistant cancers for oncolytic virus-triggered caspase-2 cell death. Cancer Cell 2011; 20: 443–456.

    CAS  PubMed  Google Scholar 

  185. Sinkovics JG, Horvath JC . Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp (Warsz) 2008; 56(Suppl 1): 3s–59s.

    Google Scholar 

Download references

Acknowledgements

BL is a recipient of the University of Southern California Norris Comprehensive Cancer Center Wang Scholarship in Cancer Research. We thank Costas Koumenis, Albert Koong, Kyle Pfaffenbach and Kate Ott for helpful discussions. This work was supported in part by National Institutes of Health Grants CA027607 and 1 P01 AG034906 to ASL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, B., Lee, A. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 32, 805–818 (2013). https://doi.org/10.1038/onc.2012.130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.130

Keywords

This article is cited by

Search

Quick links