Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling

Abstract

Multiple DNA methylation changes in the cancer methylome are associated with the acquisition of drug resistance; however it remains uncertain how many represent critical DNA methylation drivers of chemoresistance. Using isogenic, cisplatin-sensitive/resistant ovarian cancer cell lines and inducing resensitizaton with demethylating agents, we aimed to identify consistent methylation and expression changes associated with chemoresistance. Using genome-wide DNA methylation profiling across 27 578 CpG sites, we identified loci at 4092 genes becoming hypermethylated in chemoresistant A2780/cp70 compared with the parental-sensitive A2780 cell line. Hypermethylation at gene promoter regions is often associated with transcriptional silencing; however, expression of only 245 of these hypermethylated genes becomes downregulated in A2780/cp70 as measured by microarray expression profiling. Treatment of A2780/cp70 with the demethylating agent 2-deoxy-5′-azacytidine induces resensitization to cisplatin and re-expression of 41 of the downregulated genes. A total of 13/41 genes were consistently hypermethylated in further independent cisplatin-resistant A2780 cell derivatives. CpG sites at 9 of the 13 genes (ARHGDIB, ARMCX2, COL1A, FLNA, FLNC, MEST, MLH1, NTS and PSMB9) acquired methylation in ovarian tumours at relapse following chemotherapy or chemoresistant cell lines derived at the time of patient relapse. Furthermore, 5/13 genes (ARMCX2, COL1A1, MDK, MEST and MLH1) acquired methylation in drug-resistant ovarian cancer-sustaining (side population) cells. MLH1 has a direct role in conferring cisplatin sensitivity when reintroduced into cells in vitro. This combined genomics approach has identified further potential key drivers of chemoresistance whose expression is silenced by DNA methylation that should be further evaluated as clinical biomarkers of drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  • Agarwal R, Kaye SB . (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3: 502–516.

    Article  CAS  Google Scholar 

  • Anthoney DA, McIlwrath AJ, Gallagher WM, Edlin AR, Brown R . (1996). Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells. Cancer Res 56: 1374–1381.

    CAS  PubMed  Google Scholar 

  • Bapat SA, Mali AM, Koppikar CB, Kurrey NK . (2005). Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65: 3025–3029.

    Article  CAS  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A, Herzyk P . (2004). Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573: 83–92.

    Article  CAS  Google Scholar 

  • Broxterman HJ, Gotink KJ, Verheul HM . (2009). Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Updat 12: 114–126.

    Article  CAS  Google Scholar 

  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21: 103–107.

    Article  CAS  Google Scholar 

  • Cannistra SA . (2004). Cancer of the ovary. N Engl J Med 351: 2519–2529.

    Article  CAS  Google Scholar 

  • Chang X, Monitto CL, Demokan S, Kim MS, Chang SS, Zhong X et al. (2010). Identification of hypermethylated genes associated with cisplatin resistance in human cancers. Cancer Res 70: 2870–2879.

    Article  CAS  Google Scholar 

  • Dai W, Teodoridis JM, Graham J, Zeller C, Huang TH, Yan P et al. (2008). Methylation linear discriminant analysis (MLDA) for identifying differentially methylated CpG islands. BMC Bioinformatics 9: 337.

    Article  Google Scholar 

  • Dai W, Teodoridis J, Zeller C, Graham JS, Hersey JM, Flanagan JM et al. (2011). Systematic CpG islands methylation profiling of genes in the Wnt pathway in epithelial ovarian cancer identifies biomarkers of progression-free survival. Clin Cancer Res 17: 4052–4062.

    Article  CAS  Google Scholar 

  • Dean M, Fojo T, Bates S . (2005). Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275–284.

    Article  CAS  Google Scholar 

  • Eckstein N, Servan K, Hildebrandt B, Politz A, von Jonquieres G, Wolf-Kummeth S et al. (2009). Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res 69: 2996–3003.

    Article  CAS  Google Scholar 

  • Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA et al. (2008). Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451: 1111–1115.

    Article  CAS  Google Scholar 

  • Esteller M . (2008). Epigenetics in cancer. N Engl J Med 358: 1148–1159.

    Article  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M . (1987). CpG islands in vertebrate genomes. J Mol Biol 196: 261–282.

    Article  CAS  Google Scholar 

  • Gifford G, Paul J, Vasey PA, Kaye SB, Brown R . (2004). The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 10: 4420–4426.

    Article  CAS  Google Scholar 

  • Glasspool RM, Teodoridis JM, Brown R . (2006). Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer 94: 1087–1092.

    Article  CAS  Google Scholar 

  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158.

    Article  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

    Article  Google Scholar 

  • Issa JP . (2004). CpG island methylator phenotype in cancer. Nat Rev Cancer 4: 988–993.

    Article  CAS  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW . (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164.

    Article  CAS  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    Article  CAS  Google Scholar 

  • Jung H, Lee SK, Jho EH . (2011). Mest/Peg1 inhibits Wnt signaling via regulation of LRP6 glycosylation. Biochem J 436: 263–269.

    Article  CAS  Google Scholar 

  • Kartalou M, Essigmann JM . (2001). Recognition of cisplatin adducts by cellular proteins. Mutat Res 478: 1–21.

    Article  CAS  Google Scholar 

  • Langdon SP, Lawrie SS, Hay FG, Hawkes MM, McDonald A, Hayward IP et al. (1988). Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res 48: 6166–6172.

    CAS  PubMed  Google Scholar 

  • Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA . (1998). Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 20: 163–169.

    Article  CAS  Google Scholar 

  • Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P et al. (2009). Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics 2: 34.

    Article  Google Scholar 

  • Luqmani YA . (2005). Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14 (Suppl 1): 35–48.

    Article  Google Scholar 

  • Nakanishi H, Suda T, Katoh M, Watanabe A, Igishi T, Kodani M et al. (2004). Loss of imprinting of PEG1/MEST in lung cancer cell lines. Oncol Rep 12: 1273–1278.

    CAS  PubMed  Google Scholar 

  • O'Brien V, Brown R . (2006). Signalling cell cycle arrest and cell death through the MMR System. Carcinogenesis 27: 682–692.

    Article  CAS  Google Scholar 

  • Ozols RF . (2004). Advanced ovarian cancer: a clinical update on first-line treatment, recurrent disease, and new agents. J Natl Compr Canc Netw 2 (Suppl 2): S60–S73.

    CAS  PubMed  Google Scholar 

  • Papouli E, Cejka P, Jiricny J . (2004). Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells. Cancer Res 64: 3391–3394.

    Article  CAS  Google Scholar 

  • Pedersen IS, Dervan P, McGoldrick A, Harrison M, Ponchel F, Speirs V et al. (2002). Promoter switch: a novel mechanism causing biallelic PEG1/MEST expression in invasive breast cancer. Hum Mol Genet 11: 1449–1453.

    Article  CAS  Google Scholar 

  • Peng C, Zhang X, Yu H, Wu D, Zheng J . (2011). Wnt5a as a predictor in poor clinical outcome of patients and a mediator in chemoresistance of ovarian cancer. Int J Gynecol Cancer 21: 280–288.

    Article  Google Scholar 

  • Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R . (2000). Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 60: 6039–6044.

    CAS  PubMed  Google Scholar 

  • Rajasekhar VK, Dalerba P, Passegue E, Lagasse E, Najbauer J . (2008). The 5th International Society for Stem Cell Research (ISSCR) Annual Meeting, June 2007. Stem Cells 26: 292–298.

    Article  CAS  Google Scholar 

  • Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D et al. (2011). Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther 10: 325–335.

    Article  CAS  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL . (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103: 1412–1417.

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ . (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101–1108.

    Article  CAS  Google Scholar 

  • Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141: 69–80.

    Article  CAS  Google Scholar 

  • Smith CA, McClive PJ, Sinclair AH . (2005). Temporal and spatial expression profile of the novel armadillo-related gene, Alex2, during testicular differentiation in the mouse embryo. Dev Dyn 233: 188–193.

    Article  CAS  Google Scholar 

  • Steele N, Finn P, Brown R, Plumb JA . (2009). Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer 100: 758–763.

    Article  CAS  Google Scholar 

  • Stojic L, Brun R, Jiricny J . (2004). Mismatch repair and DNA damage signalling. DNA Repair (Amst) 3: 1091–1101.

    Article  CAS  Google Scholar 

  • Strathdee G, MacKean MJ, Illand M, Brown R . (1999). A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18: 2335–2341.

    Article  CAS  Google Scholar 

  • Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31: 141–149.

    Article  CAS  Google Scholar 

  • Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 103: 11154–11159.

    Article  CAS  Google Scholar 

  • Teodoridis JM, Hall J, Marsh S, Kannall HD, Smyth C, Curto J et al. (2005). CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res 65: 8961–8967.

    Article  CAS  Google Scholar 

  • Wang D, Lippard SJ . (2005). Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4: 307–320.

    Article  CAS  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science 318: 1108–1113.

    Article  CAS  Google Scholar 

  • Yoshioka K, Yoshioka Y, Hsieh P . (2006). ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 22: 501–510.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lisa McMillan for her valuable contribution to the initial analysis of the Affymetrix expression data. We also thank Nahal Masrour for preparation of samples and Kerra Pearce for running the Infinium HumanMethylation450 BeadChips at the UCL Genomics Center, London. This work was supported by a Cancer Research UK (CZ, WD and RB) grant (C536/A6689), Imperial Experimental Cancer Medicine Centre, Imperial Biomedical Research Centre and Ovarian Cancer Action (SR and CSMWB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Brown.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, C., Dai, W., Steele, N. et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene 31, 4567–4576 (2012). https://doi.org/10.1038/onc.2011.611

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.611

Keywords

This article is cited by

Search

Quick links