Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sox2 expression in breast tumours and activation in breast cancer stem cells

Abstract

The cancer stem cell (CSC) model does not imply that tumours are generated from transformed tissue stem cells. The target of transformation could be a tissue stem cell, a progenitor cell, or a differentiated cell that acquires self-renewal ability. The observation that induced pluripotency reprogramming and cancer are related has lead to the speculation that CSCs may arise through a reprogramming-like mechanism. Expression of pluripotency genes (Oct4, Nanog and Sox2) was tested in breast tumours by immunohistochemistry and it was found that Sox2 is expressed in early stage breast tumours. However, expression of Oct4 or Nanog was not found. Mammosphere formation in culture was used to reveal stem cell properties, where expression of Sox2, but not Oct4 or Nanog, was induced. Over-expression of Sox2 increased mammosphere formation, effect dependent on continuous Sox2 expression; furthermore, Sox2 knockdown prevented mammosphere formation and delayed tumour formation in xenograft tumour initiation models. Induction of Sox2 expression was achieved through activation of the distal enhancer of Sox2 promoter upon sphere formation, the same element that controls Sox2 transcription in pluripotent stem cells. These findings suggest that reactivation of Sox2 represents an early step in breast tumour initiation, explaining tumour heterogeneity by placing the tumour-initiating event in any cell along the axis of mammary differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H . (2005). Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11: 1154–1159.

    CAS  PubMed  Google Scholar 

  • Akala OO, Park IK, Qian D, Pihalja M, Becker MW, Clarke MF . (2008). Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature 453: 228–232.

    Article  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  Google Scholar 

  • Ambady S, Malcuit C, Kashpur O, Kole D, Holmes WF, Hedblom E et al. (2010). Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int J Dev Biol 54: 1743–1754.

    Article  CAS  Google Scholar 

  • Ao A, Morrison BJ, Wang H, Lopez JA, Reynolds BA, Lu J . (2011). Response of estrogen receptor-positive breast cancer tumorspheres to antiestrogen treatments. PLoS ONE 6: e18810.

    Article  CAS  Google Scholar 

  • Callagy G, Cattaneo E, Daigo Y, Happerfield L, Bobrow LG, Pharoah PD et al. (2003). Molecular classification of breast carcinomas using tissue microarrays. Diagn Mol Pathol 12: 27–34.

    Article  CAS  Google Scholar 

  • Cantz T, Key G, Bleidissel M, Gentile L, Han DW, Brenne A et al. (2007). Absence of OCT4 expression in somatic tumor cell lines. Stem Cells 26: 692–697.

    Article  Google Scholar 

  • Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 108: 7950–7955.

    Article  CAS  Google Scholar 

  • Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 283: 17969–17978.

    Article  CAS  Google Scholar 

  • Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138: 1083–1095.

    Article  CAS  Google Scholar 

  • Cirenajwis H, Smiljanic S, Honeth G, Hegardt C, Marton LJ, Oredsson SM . (2010). Reduction of the putative CD44+CD24− breast cancer stem cell population by targeting the polyamine metabolic pathway with PG11047. Anticancer Drugs 21: 897–906.

    Article  CAS  Google Scholar 

  • Comtesse N, Zippel A, Walle S, Monz D, Backes C, Fischer U et al. (2005). Complex humoral immune response against a benign tumor: frequent antibody response against specific antigens as diagnostic targets. Proc Natl Acad Sci USA 102: 9601–9606.

    Article  CAS  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. (2003). in vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270.

    Article  CAS  Google Scholar 

  • Engelmann K, Shen H, Finn OJ . (2008). MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res 68: 2419–2426.

    Article  CAS  Google Scholar 

  • Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG et al. (2007). Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99: 616–627.

    Article  CAS  Google Scholar 

  • Fillmore CM, Kuperwasser C . (2008). Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10: R25.

    Article  Google Scholar 

  • Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P et al. (2009). SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27: 40–48.

    Article  CAS  Google Scholar 

  • Ghods AJ, Irvin D, Liu G, Yuan X, Abdulkadir IR, Tunici P et al. (2007). Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 25: 1645–1653.

    Article  CAS  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555–567.

    Article  CAS  Google Scholar 

  • Gure AO, Stockert E, Scanlan MJ, Keresztes RS, Jager D, Altorki NK et al. (2000). Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proc Natl Acad Sci USA 97: 4198–4203.

    Article  CAS  Google Scholar 

  • Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M et al. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460: 1132–1135.

    Article  CAS  Google Scholar 

  • Iliopoulos D, Hirsch HA, Wang G, Struhl K . (2011). Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 108: 1397–1402.

    Article  CAS  Google Scholar 

  • Jaenisch R, Young R . (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132: 567–582.

    Article  CAS  Google Scholar 

  • Katoh M . (2010). Network of WNT and other regulatory signaling cascades in pluripotent stem cells and cancer stem cells. Curr Pharm Biotechnol 12: 160–170.

    Article  Google Scholar 

  • Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460: 1140–1144.

    Article  CAS  Google Scholar 

  • Kidder BL, Palmer S, Knott JG . (2009). SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27: 317–328.

    Article  CAS  Google Scholar 

  • Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H et al. (2009). Direct reprogramming of human neural stem cells by OCT4. Nature 461: 649–643.

    Article  CAS  Google Scholar 

  • Kondo T, Raff M . (2004). Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 18: 2963–2972.

    Article  CAS  Google Scholar 

  • Lengerke C, Fehm T, Kurth R, Neubauer H, Scheble V, Muller F et al. (2011). Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer 11: 42.

    Article  Google Scholar 

  • Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M et al. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460: 1136–1139.

    Article  CAS  Google Scholar 

  • Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100: 672–679.

    Article  CAS  Google Scholar 

  • Li XL, Eishi Y, Bai YQ, Sakai H, Akiyama Y, Tani M et al. (2004). Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int J Oncol 24: 257–263.

    CAS  PubMed  Google Scholar 

  • Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X et al. (2010). The canonical NF-\{kappa\}B pathway governs mammary tumorigenesis in transgen. Cancer Res 70: 10464–10473.

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    Article  CAS  Google Scholar 

  • Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S et al. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460: 1149–1153.

    Article  CAS  Google Scholar 

  • Martin AG, San-Antonio B, Fresno M . (2001). Regulation of nuclear factor kappa B transactivation. Implication of phosphatidylinositol 3-kinase and protein kinase C zeta in c-Rel activation by tumor necrosis factor alpha. J Biol Chem 276: 15840–15849.

    Article  CAS  Google Scholar 

  • Meissner A, Wernig M, Jaenisch R . (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25: 1177–1181.

    Article  CAS  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.

    Article  CAS  Google Scholar 

  • Miyagi S, Nishimoto M, Saito T, Ninomiya M, Sawamoto K, Okano H et al. (2006). The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem 281: 13374–13381.

    Article  CAS  Google Scholar 

  • Miyagi S, Saito T, Mizutani K, Masuyama N, Gotoh Y, Iwama A et al. (2004). The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Mol Cell Biol 24: 4207–4220.

    Article  CAS  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26: 101–106.

    Article  CAS  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S . (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: 949–953.

    Article  CAS  Google Scholar 

  • Papapetrou EP, Tomishima MJ, Chambers SM, Mica Y, Reed E, Menon J et al. (2009). Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci USA 106: 12759–12764.

    Article  CAS  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65: 6207–6219.

    Article  CAS  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65: 5506–5511.

    Article  CAS  Google Scholar 

  • Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, Rodriguez-Gil Y, Martinez MA, Hernandez L et al. (2007). Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 20: 474–481.

    Article  CAS  Google Scholar 

  • Sanada Y, Yoshida K, Ohara M, Oeda M, Konishi K, Tsutani Y . (2006). Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Pancreas 32: 164–170.

    Article  CAS  Google Scholar 

  • Sattler HP, Lensch R, Rohde V, Zimmer E, Meese E, Bonkhoff H et al. (2000). Novel amplification unit at chromosome 3q25-q27 in human prostate cancer. Prostate 45: 207–215.

    Article  CAS  Google Scholar 

  • Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN et al. (2008). Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68: 3243–3250.

    Article  CAS  Google Scholar 

  • Sholl LM, Barletta JA, Yeap BY, Chirieac LR, Hornick JL . (2010). Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma. Am J Surg Pathol 34: 1193–1198.

    Article  Google Scholar 

  • Simoes BM, Piva M, Iriondo O, Comaills V, Lopez-Ruiz JA, Zabalza I et al. (2010). Effects of estrogen on the proportion of stem cells in the breast. Breast Cancer Res Treat 129: 23–35.

    Article  Google Scholar 

  • Suo G, Han J, Wang X, Zhang J, Zhao Y, Zhao Y et al. (2005). Oct4 pseudogenes are transcribed in cancers. Biochem Biophys Res Commun 337: 1047–1051.

    Article  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.

    Article  CAS  Google Scholar 

  • Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T et al. (2009). Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15: 4234–4241.

    Article  CAS  Google Scholar 

  • Tomioka M, Nishimoto M, Miyagi S, Katayanagi T, Fukui N, Niwa H et al. (2002). Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 30: 3202–3213.

    Article  CAS  Google Scholar 

  • Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460: 1145–1148.

    Article  CAS  Google Scholar 

  • Yamanaka S . (2008). Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 41(Suppl 1): 51–56.

    PubMed  Google Scholar 

  • Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E et al. (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127: 2367–2382.

    CAS  PubMed  Google Scholar 

  • Zeng YA, Nusse R . (2010). Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6: 568–577.

    Article  CAS  Google Scholar 

  • Zhang J, Wang X, Li M, Han J, Chen B, Wang B et al. (2006). NANOGP8 is a retrogene expressed in cancers. FEBS J 273: 1723–1730.

    Article  CAS  Google Scholar 

  • Zhou J, Zhang H, Gu P, Bai J, Margolick JB, Zhang Y . (2007). NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 111: 419–427.

    Article  Google Scholar 

Download references

Acknowledgements

The Regulation of Cell Growth Laboratory is supported by grants from Obra Social Kutxa, Fundación Médica Mutua Madrileña, Gobierno Vasco (Saiotek program and Consejería de Educación PI2010-25) and Instituto de Salud Carlos III Acción Estratégica en Salud (PI2010-01035). We thank Izaskun Beloqui, Andres Pavon and Maria Diaz for technical support. We thank the Flow Cytometry Unit at Inbiomed for extensive aid in flow cytometric analysis of fresh tumour cells. We thank our colleagues at Inbiomed for helpful discussion. We thank Dr R Sanchez-Pernaute and Dr L Vellon for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Martin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leis, O., Eguiara, A., Lopez-Arribillaga, E. et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 31, 1354–1365 (2012). https://doi.org/10.1038/onc.2011.338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.338

Keywords

This article is cited by

Search

Quick links