Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells

Abstract

MUC16/CA125 is a tumor marker currently used in clinics for the follow-up of patients with ovarian cancer. However, MUC16 expression is not entirely restricted to ovarian malignancies and has been reported in other cancers including breast cancer. Although it is well established as a biomarker, function of MUC16 in cancer remains to be elucidated. In the present study, we investigated the role of MUC16 in breast cancer and its underlying mechanisms. Interestingly, our results showed that MUC16 is overexpressed in breast cancer tissues whereas not expressed in non-neoplastic ducts. Further, stable knockdown of MUC16 in breast cancer cells (MDA MB 231 and HBL100) resulted in significant decrease in the rate of cell growth, tumorigenicity and increased apoptosis. In search of a mechanism for breast cancer cell proliferation we found that MUC16 interacts with the ezrin/radixin/moesin domain-containing protein of Janus kinase (JAK2) as demonstrated by the reciprocal immunoprecipitation method. These interactions mediate phosphorylation of STAT3 (Tyr705), which might be a potential mechanism for MUC16-induced proliferation of breast cancer cells by a subsequent co-transactivation of transcription factor c-Jun. Furthermore, silencing of MUC16 induced G2/M arrest in breast cancer cells through downregulation of Cyclin B1 and decreased phosphorylation of Aurora kinase A. This in turn led to enhanced apoptosis in the MUC16-knockdown breast cancer cells through Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated extrinsic apoptotic pathway with the help of c-Jun N-terminal kinase signaling. Collectively, our results suggest that MUC16 has a dual role in breast cancer cell proliferation by interacting with JAK2 and by inhibiting the apoptotic process through downregulation of TRAIL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bafna S, Singh AP, Moniaux N, Eudy JD, Meza JL, Batra SK . (2008). MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. Cancer Res 68: 9231–9238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bast Jr RC, Xu FJ, Yu YH, Barnhill S, Zhang Z, Mills GB . (1998). CA 125: the past and the future. Int J Biol Markers 13: 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W et al. (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98: 13681–13686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blalock TD, Spurr-Michaud SJ, Tisdale AS, Heimer SR, Gilmore MS, Ramesh V et al. (2007). Functions of MUC16 in corneal epithelial cells. Invest Ophthalmol Vis Sci 48: 4509–4518.

    Article  PubMed  Google Scholar 

  • Bode AM, Dong Z . (2007). The functional contrariety of JNK. Mol Carcinog 46: 591–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N et al. (2003). STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 197: 157–168.

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi P, Singh AP, Chakraborty S, Chauhan SC, Bafna S, Meza JL et al. (2008). MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res 68: 2065–2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Cheng A, Chen YQ, Hymel A, Hanson EP, Kimmel L et al. (1997). The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc Natl Acad Sci USA 94: 6910–6915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL et al. (2000). Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97: 1754–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevenger CV . (2004). Roles and regulation of stat family transcription factors in human breast cancer. Am J Pathol 165: 1449–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coqueret O . (2003). New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13: 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou JC . (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20: 929–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendrick JL, Konishi I, Geary SM, Parmley TH, Quirk Jr JG, O'Brien TJ . (1997). CA125 phosphorylation is associated with its secretion from the WISH human amnion cell line. Tumour Biol 18: 278–289.

    Article  CAS  PubMed  Google Scholar 

  • Firmbach-Kraft I, Byers M, Shows T, la-Favera R, Krolewski JJ . (1990). tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene 5: 1329–1336.

    CAS  PubMed  Google Scholar 

  • Fujimoto K, Hosotani R, Doi R, Wada M, Lee JU, Koshiba T et al. (1999). Induction of cell-cycle arrest and apoptosis by a novel retinobenzoic-acid derivative, TAC-101, in human pancreatic-cancer cells. Int J Cancer 81: 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S et al. (2000). Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60: 1426–1433.

    CAS  PubMed  Google Scholar 

  • Ginsberg M, Czeko E, Muller P, Ren Z, Chen X, Darnell Jr JE . (2007). Amino acid residues required for physical and cooperative transcriptional interaction of STAT3 and AP-1 proteins c-Jun and c-Fos. Mol Cell Biol 27: 6300–6308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N . (1995). Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J 14: 2857–2865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell LH, Weinert TA . (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634.

    Article  CAS  PubMed  Google Scholar 

  • Hattrup CL, Gendler SJ . (2008). Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70: 431–457.

    Article  CAS  PubMed  Google Scholar 

  • He L, Yang H, Ma Y, Pledger WJ, Cress WD, Cheng JQ . (2008). Identification of Aurora-A as a direct target of E2F3 during G2/M cell cycle progression. J Biol Chem 283: 31012–31020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M et al. (2003). Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114: 585–598.

    Article  CAS  PubMed  Google Scholar 

  • Huang LJ, Constantinescu SN, Lodish HF . (2001). The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 8: 1327–1338.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Walstrom A, Zhang L, Zhao Y, Cui M, Ye L et al. (2009). Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected macrophages. PLoS One 4: e5397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin P, Hardy S, Morgan DO . (1998). Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J Cell Biol 141: 875–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Spiegelman B, Hanahan D, Wisdom R . (1996). Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 16: 4504–4511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A . (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12: 611–620.

    Article  CAS  PubMed  Google Scholar 

  • Korgun ET, Celik-Ozenci C, Acar N, Cayli S, Desoye G, Demir R . (2006). Location of cell cycle regulators cyclin B1, cyclin A, PCNA, Ki67 and cell cycle inhibitors p21, p27 and p57 in human first trimester placenta and deciduas. Histochem Cell Biol 125: 615–624.

    Article  CAS  PubMed  Google Scholar 

  • Kufe DW . (2009). Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9: 874–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc HN, Ashkenazi A . (2003). Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10: 66–75.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Helfman DM . (2004). Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 279: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  • Levy DE, Darnell Jr JE . (2002). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3: 651–662.

    Article  CAS  PubMed  Google Scholar 

  • Li G, Gustafson-Brown C, Hanks SK, Nason K, Arbeit JM, Pogliano K et al. (2003). c-Jun is essential for organization of the epidermal leading edge. Dev Cell 4: 865–877.

    Article  CAS  PubMed  Google Scholar 

  • Lin HH, Chen JH, Huang CC, Wang CJ . (2007). Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. Int J Cancer 120: 2306–2316.

    Article  CAS  PubMed  Google Scholar 

  • Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y et al. (2002). Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7: 1173–1182.

    Article  CAS  PubMed  Google Scholar 

  • Moritani S, Ichihara S, Hasegawa M, Endo T, Oiwa M, Yoshikawa K et al. (2008). Serous papillary adenocarcinoma of the female genital organs and invasive micropapillary carcinoma of the breast. Are WT1, CA125, and GCDFP-15 useful in differential diagnosis? Hum Pathol 39: 666–671.

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR . (2006). Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 103: 11573–11578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munro EG, Jain M, Oliva E, Kamal N, Lele SM, Lynch MP et al. (2009). Upregulation of MUC4 in cervical squamous cell carcinoma: pathologic significance. Int J Gynecol Pathol 28: 127–133.

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Brien TJ, Beard JB, Underwood LJ, Shigemasa K . (2002). The CA 125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumour Biol 23: 154–169.

    Article  CAS  PubMed  Google Scholar 

  • Orren DK, Petersen LN, Bohr VA . (1997). Persistent DNA damage inhibits S-phase and G2 progression, and results in apoptosis. Mol Biol Cell 8: 1129–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouchi M, Fujiuchi N, Sasai K, Katayama H, Minamishima YA, Ongusaha PP et al. (2004). BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem 279: 19643–19648.

    Article  CAS  PubMed  Google Scholar 

  • Perez BH, Gipson IK . (2008). Focus on molecules: human mucin MUC16. Exp Eye Res 87: 400–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnusamy MP, Lakshmanan I, Jain M, Das S, Chakraborty S, Dey P et al. (2010). MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 29: 5741–5754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Davis SR, Pumphrey JG, Bao J, Nau MM, Meltzer PS et al. (2009). TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat 113: 217–230.

    Article  PubMed  Google Scholar 

  • Rakha EA, Boyce RW, bd El-Rehim D, Kurien T, Green AR, Paish EC et al. (2005). Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol 18: 1295–1304.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (1996). Cancer cell cycles. Science 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK . (2004). Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res 64: 622–630.

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Wen Y, Swanson BJ, Shanmugam K, Kazlauskas A, Cerny RL et al. (2007). Platelet-derived growth factor receptor beta-mediated phosphorylation of MUC1 enhances invasiveness in pancreatic adenocarcinoma cells. Cancer Res 67: 5201–5210.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Yamashita T, Asada M, Mizutani S, Yoshikawa H, Tohyama M . (2002). Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol 158: 321–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong W, Pollard JW . (1999). Progesterone inhibits estrogen-induced cyclin D1 and cdk4 nuclear translocation, cyclin E- and cyclin A-cdk2 kinase activation, and cell proliferation in uterine epithelial cells in mice. Mol Cell Biol 19: 2251–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velazquez L, Fellous M, Stark GR, Pellegrini S . (1992). A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 70: 313–322.

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ . (1996). BID: a novel BH3 domain-only death agonist. Genes Dev 10: 2859–2869.

    Article  CAS  PubMed  Google Scholar 

  • Watson CJ . (2001). Stat transcription factors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 6: 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Wu YM, Nowack DD, Omenn GS, Haab BB . (2009). Mucin glycosylation is altered by pro-inflammatory signaling in pancreatic-cancer cells. J Proteome Res 8: 1876–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin BW, Dnistrian A, Lloyd KO . (2002). Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. Int J Cancer 98: 737–740.

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Pardoll D, Jove R . (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9: 798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue P, Turkson J . (2009). Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 18: 45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenz R, Scheuch H, Martin P, Frank C, Eferl R, Kenner L et al. (2003). c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev Cell 4: 879–889.

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Ma Y, Seemann J, Huang LJ . (2010). A regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F). Biochem J 426: 91–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are supported by grants from the National Institutes of Health (CA78590, CA111294, CA133774 and CA131944) and Department of Defense (BC101014). We thank Dr Jessica Mercer, Editorial Grants Associate at UNMC, for carefully editing this manuscript. We also acknowledge Erik Moore and Kavita Mallya for their technical support. We also thank Janice A Tayor and James R Talaska of the confocal laser scanning microscope core facility at UNMC for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Batra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmanan, I., Ponnusamy, M., Das, S. et al. MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells. Oncogene 31, 805–817 (2012). https://doi.org/10.1038/onc.2011.297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.297

Keywords

This article is cited by

Search

Quick links