Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells

Abstract

The transcription factor FOXP3 has been identified as a tumour suppressor in the breast and prostate epithelia, but little is known about its specific mechanism of action. We have identified a feed-forward regulatory loop in which FOXP3 suppresses the expression of the oncogene SATB1. In particular, we demonstrate that SATB1 is not only a direct target of FOXP3 repression, but that FOXP3 also induces two miRs, miR-7 and miR-155, which specifically target the 3′-UTR of SATB1 to further regulate its expression. We conclude that FOXP3-regulated miRs form part of the mechanism by which FOXP3 prevents the transformation of the healthy breast epithelium to a cancerous phenotype. Approaches aimed at restoring FOXP3 function and the miRs it regulates could help provide new approaches to target breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Barry SC, Harder B, Brzezinski M, Flint LY, Seppen J, Osborne WR . (2001). Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther 12: 1103–1108.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ et al. (2007). MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8: R214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17: 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  • Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, Nguyen GH et al. (2008). p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4: 229.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown CY, Sadlon T, Gargett T, Melville E, Zhang R, Drabsch Y et al. (2010). Robust, reversible gene knockdown using a single lentiviral short hairpin RNA vector. Hum Gene Ther 21: 1005–1017.

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Han HJ, Kohwi-Shigematsu T . (2003). Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34: 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Chen C, Wang L, Chang X, Zheng P, Liu Y . (2008). Cutting edge: broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol 180: 5163–5166.

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Fu X, Alves P, Gerstein M . (2009). mRNA expression profiles show differential regulatory effects of microRNAs between estrogen receptor-positive and estrogen receptor-negative breast cancer. Genome Biol 10: R90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Lu X, Wang G, Zheng L, Shu X, Zhu S et al. (2010). Expression of SATB1 and heparanase in gastric cancer and its relationship to clinicopathologic features. APMIS 118: 855–863.

    Article  CAS  PubMed  Google Scholar 

  • Farazi TA, Spitzer JI, Morozov P, Tuschl T . (2010). miRNAs in human cancer. J Pathol 223: 102–115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feuerer M, Hill JA, Mathis D, Benoist C . (2009). Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 10: 689–695.

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N . (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  • Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW et al. (2008). Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA 105: 13021–13026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY . (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336.

    CAS  PubMed  Google Scholar 

  • Galande S, Purbey PK, Notani D, Kumar PP . (2007). The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev 17: 408–414.

    Article  CAS  PubMed  Google Scholar 

  • Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA et al. (2007). Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445: 771–775.

    Article  CAS  PubMed  Google Scholar 

  • Han H-J, Rudsso J, Kohwi Y, Kohwi-Shigematsu T . (2008). SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452: 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Hanker LC, Karn T, Mavrova-Risteska L, Ruckhaberle E, Gaetje R, Holtrich U et al. (2010). SATB1 gene expression and breast cancer prognosis. Breast (e-pub ahead of print; dx.doi.org/10.1016/j.breast.2010.10.002).

  • Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R et al. (2007). Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27: 786–800.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu C, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  • Iorns E, Hnatyszyn HJ, Seo P, Clarke J, Ward T, Lippman M . (2010). The role of SATB1 in breast cancer pathogenesis. J Natl Cancer Inst 102: 1284–1296.

    Article  CAS  PubMed  Google Scholar 

  • Josefowicz SZ, Rudensky A . (2009). Control of regulatory T cell lineage commitment and maintenance. Immunity 30: 616–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung DJ, Jin DH, Hong SW, Kim JE, Shin JS, Kim D et al. (2010). Foxp3 expression in p53-dependent DNA damage responses. J Biol Chem 285: 7995–8002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is downregulated in glioblastoma. Cancer Res 68: 3566–3572.

    Article  CAS  PubMed  Google Scholar 

  • Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E . (2009). Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182: 2578–2582.

    Article  CAS  PubMed  Google Scholar 

  • Kohwi-Shigematsu T, Han HJ, Russo J, Kohwi Y . (2010). Re: The role of SATB1 in breast cancer pathogenesis. J Natl Cancer Inst 102: 1879–1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D et al. (2010). MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285: 17869–17879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladoire S, Arnould L, Mignot G, Coudert B, Rebe C, Chalmin F et al. (2011). Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 125: 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY et al. (2010a). Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial–mesenchymal transition of breast cancer cells. Cell Death Differ 18: 16–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP et al. (2010b). Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci 101: 80–86.

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Wang L, Chen G, Katoh H, Chen C, Liu Y et al. (2009). FOXP3 upregulates p21 expression by site-specific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus. Cancer Res 69: 2252–2259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang L, Zheng P . (2010). X-linked tumor suppressors: perplexing inheritance, a unique therapeutic opportunity. Trends Genet 26: 260–265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K et al. (2009). Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30: 80–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Cheng C, Zhu S, Yang Y, Zheng L, Wang G et al. (2010). SATB1 is an independent prognostic marker for gastric cancer in a Chinese population. Oncol Rep 24: 981–987.

    CAS  PubMed  Google Scholar 

  • Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD et al. (2007). Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445: 931–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Ladoire S, Mignot G, Apetoh L, Ghiringhelli F . (2010). Human FOXP3 and cancer. Oncogene 29: 4121–4129.

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    CAS  PubMed  Google Scholar 

  • Patani N, Jiang W, Mansel R, Newbold R, Mokbel K . (2009). The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int 9: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O . (2010). Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127: 1785–1794.

    Article  CAS  PubMed  Google Scholar 

  • Re A, Cora D, Taverna D, Caselle M . (2009). Genome-wide survey of microRNA–transcription factor feed-forward regulatory circuits in human. Mol Biosyst 5: 854–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy SD, Ohshiro K, Rayala SK, Kumar R . (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68: 8195–8200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richon VM . (2008). A new path to the cancer epigenome. Nat Biotechnol 26: 655–656.

    Article  CAS  PubMed  Google Scholar 

  • Sadlon TJ, Wilkinson BG, Pederson S, Brown CY, Bresatz S, Gargett T et al. (2010). Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. J Immunol 185: 1071–1081.

    Article  CAS  PubMed  Google Scholar 

  • Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112: 4202–4212.

    Article  CAS  PubMed  Google Scholar 

  • Selcuklu SD, Yakicier MC, Erson AE . (2009). An investigation of microRNAs mapping to breast cancer related genomic gain and loss regions. Cancer Genet Cytogenet 189: 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Tsang J, Zhu J, van Oudenaarden A . (2007). MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26: 753–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY et al. (2009). Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell 16: 336–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LM, Rudensky AY . (2007). Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8: 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Wolfer A, Wittner BS, Irimia D, Flavin RJ, Lupien M, Gunawardane RN et al. (2010). MYC regulation of a ‘poor-prognosis’ metastatic cancer cell state. Proc Natl Acad Sci USA 107: 3698–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang X, Zhuang X, Ju S, Zhang S, Jiang H, Mu J et al. (2011). miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene (e-pub ahead of print 4 April 2011; doi:10.1038/onc.2011.54).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T . (2002). SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419: 641–645.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103: 9136–9141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY . (2007). Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936–940.

    Article  CAS  PubMed  Google Scholar 

  • Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L et al. (2007a). FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest 117: 3765–3773.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W et al. (2007b). FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129: 1275–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions to this research made by the following co-workers: Danika Hill, Silvia Nobbs, Elizabeth Melville, Suzanne Bresatz, Nicola Eastaff-Leung, Bridget Wilkinson and Marlena Sekutowski. This work was funded by NHMRC Grant 565314 (SCB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S C Barry.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McInnes, N., Sadlon, T., Brown, C. et al. FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene 31, 1045–1054 (2012). https://doi.org/10.1038/onc.2011.293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.293

Keywords

This article is cited by

Search

Quick links