Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel nuclear role for the Vav3 nucleotide exchange factor in androgen receptor coactivation in prostate cancer

Abstract

Increased androgen receptor (AR) transcriptional activity mediated by coactivator proteins may drive castration-resistant prostate cancer (CRPC) growth. Vav3, a Rho GTPase guanine nucleotide exchange factor (GEF), is overexpressed in human prostate cancers, particularly in models of CRPC progression. Vav3 coactivates AR in a Vav3 pleckstrin homology (PH) domain-dependent but GEF-independent manner. Ectopic expression of Vav3 in androgen-dependent human prostate cancer cells conferred robust castration-resistant xenograft tumor growth. Vav3 but not a Vav3 PH mutant greatly stimulated interaction between the AR amino and carboxyl termini (N–C interaction), which is required for maximal receptor transcriptional activity. Vav3 was distributed between the cytoplasm and nucleus with nuclear localization-dependent on the Vav3 PH domain. Membrane targeting of Vav3 abolished Vav3 potentiation of AR activity, whereas nuclear targeting of a Vav3 PH mutant rescued AR coactivation, suggesting that nuclear localization is an important function of the Vav3 PH domain. A nuclear role for Vav3 was further demonstrated by sequential chromatin immunoprecipitation assays, which revealed that Vav3 and AR were recruited to the same transcriptional complexes of an AR target gene enhancer. These data demonstrate the importance of Vav3 in CRPC and define a novel nuclear function of Vav3 in regulating AR activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Balk SP . (2002). Androgen receptor as a target in androgen-independent prostate cancer. Urology 60: 132–138; discussion 138–139.

    Article  Google Scholar 

  • Banach-Petrosky W, Jessen WJ, Ouyang X, Gao H, Rao J, Quinn J et al. (2007). Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice. Cancer Res 67: 9089–9096.

    Article  CAS  Google Scholar 

  • Bourguignon LY, Zhu H, Zhou B, Diedrich F, Singleton PA, Hung MC . (2001). Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J Biol Chem 276: 48679–48692.

    Article  CAS  Google Scholar 

  • Brantley-Sieders DM, Zhuang G, Vaught D, Freeman T, Hwang Y, Hicks D et al. (2009). Host deficiency in Vav2/3 guanine nucleotide exchange factors impairs tumor growth, survival, and angiogenesis in vivo. Mol Cancer Res 7: 615–623.

    Article  CAS  Google Scholar 

  • Bustelo XR . (2001). Vav proteins, adaptors and cell signaling. Oncogene 20: 6372–6381.

    Article  CAS  Google Scholar 

  • Carson M . (1991). Ribbons 2.0. J Appl Crystallogr 24: 958–961.

    Article  Google Scholar 

  • Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–39.

    Article  Google Scholar 

  • Dong Z, Liu Y, Lu S, Wang A, Lee K, Wang LH et al. (2006). Vav3 oncogene is overexpressed and regulates cell growth and androgen receptor activity in human prostate cancer. Mol Endocrinol 20: 2315–2325.

    Article  CAS  Google Scholar 

  • Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina JR, Fonseca R et al. (2005). Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell 7: 39–49.

    Article  CAS  Google Scholar 

  • Franke TF, Kaplan DR, Cantley LC, Toker A . (1997). Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275: 665–668.

    Article  CAS  Google Scholar 

  • Fujikawa K, Miletic AV, Alt FW, Faccio R, Brown T, Hoog J et al. (2003). Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J Exp Med 198: 1595–1608.

    Article  CAS  Google Scholar 

  • He B, Gampe Jr RT, Kole AJ, Hnat AT, Stanley TB, An G et al. (2004). Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 16: 425–438.

    Article  CAS  Google Scholar 

  • He B, Kemppainen JA, Voegel JJ, Gronemeyer H, Wilson EM . (1999). Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 274: 37219–37225.

    Article  CAS  Google Scholar 

  • He B, Lee LW, Minges JT, Wilson EM . (2002). Dependence of selective gene activation on the androgen receptor NH2- and COOH-terminal interaction. J Biol Chem 277: 25631–25639.

    Article  CAS  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG . (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387: 733–736.

    Article  CAS  Google Scholar 

  • Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L et al. (2004). Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 164: 217–227.

    Article  CAS  Google Scholar 

  • Hornstein I, Pikarsky E, Groysman M, Amir G, Peylan-Ramu N, Katzav S . (2003). The haematopoietic specific signal transducer Vav1 is expressed in a subset of human neuroblastomas. J Pathol 199: 526–533.

    Article  CAS  Google Scholar 

  • Houlard M, Arudchandran R, Regnier-Ricard F, Germani A, Gisselbrecht S, Blank U et al. (2002). Vav1 is a component of transcriptionally active complexes. J Exp Med 195: 1115–1127.

    Article  CAS  Google Scholar 

  • Jaffe AB, Hall A . (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    Article  CAS  Google Scholar 

  • John B, Sali A . (2003). Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res 31: 3982–3992.

    Article  CAS  Google Scholar 

  • Korenchuk S, Lehr JE, MClean L, Lee YG, Whitney S, Vessella R et al. (2001). VCaP, a cell-based model system of human prostate cancer. In vivo 15: 163–168.

    CAS  PubMed  Google Scholar 

  • Lemmon MA . (1999). Structural basis for high-affinity phosphoinositide binding by pleckstrin homology domains. Biochem Soc Trans 27: 617–624.

    Article  CAS  Google Scholar 

  • Lemmon MA . (2003). Phosphoinositide recognition domains. Traffic 4: 201–213.

    Article  CAS  Google Scholar 

  • Lemmon MA . (2004). Pleckstrin homology domains: not just for phosphoinositides. Biochem Soc Trans 32: 707–711.

    Article  CAS  Google Scholar 

  • Lemmon MA . (2007). Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp 74: 81–93.

    Article  CAS  Google Scholar 

  • Lemmon MA . (2008). Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9: 99–111.

    Article  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM . (2000). Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350 (Part 1): 1–18.

    Article  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM . (2001). Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochem Soc Trans 29: 377–384.

    Article  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM, Abrams CS . (2002). Pleckstrin homology domains and the cytoskeleton. FEBS Lett 513: 71–76.

    Article  CAS  Google Scholar 

  • Liu Y, Mo JQ, Hu Q, Boivin G, Levin L, Lu S et al. (2008). Targeted overexpression of vav3 oncogene in prostatic epithelium induces nonbacterial prostatitis and prostate cancer. Cancer Res 68: 6396–6406.

    Article  CAS  Google Scholar 

  • Liu Y, Wu X, Dong Z, Lu S . (2010). The molecular mechanism of Vav3 oncogene on upregulation of androgen receptor activity in prostate cancer cells. Int J Oncol 36: 623–633.

    Article  CAS  Google Scholar 

  • Lopez-Lago M, Lee H, Cruz C, Movilla N, Bustelo XR . (2000). Tyrosine phosphorylation mediates both activation and downmodulation of the biological activity of Vav. Mol Cell Biol 20: 1678–1691.

    Article  CAS  Google Scholar 

  • Lyons LS, Burnstein KL . (2006). Vav3, a Rho GTPase guanine nucleotide exchange factor, increases during progression to androgen independence in prostate cancer cells and potentiates androgen receptor transcriptional activity. Mol Endocrinol 20: 1061–1072.

    Article  CAS  Google Scholar 

  • Lyons LS, Rao S, Balkan W, Faysal J, Maiorino CA, Burnstein KL . (2008). Ligand-independent activation of androgen receptors by Rho GTPase signaling in prostate cancer. Mol Endocrinol 22: 597–608.

    Article  CAS  Google Scholar 

  • Maffucci T, Razzini G, Ingrosso A, Chen H, Iacobelli S, Sciacchitano S et al. (2003). Role of pleckstrin homology domain in regulating membrane targeting and metabolic function of insulin receptor substrate 3. Mol Endocrinol 17: 1568–1579.

    Article  CAS  Google Scholar 

  • Mahadevan D, Powis G, Mash EA, George B, Gokhale VM, Zhang S et al. (2008). Discovery of a novel class of AKT pleckstrin homology domain inhibitors. Mol Cancer Ther 7: 2621–2632.

    Article  CAS  Google Scholar 

  • Marques RB, Dits NF, Erkens-Schulze S, van Weerden WM, Jenster G . (2010). Bypass mechanisms of the androgen receptor pathway in therapy-resistant prostate cancer cell models. PLoS One 5: e13500.

    Article  Google Scholar 

  • Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A . (2000). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29: 291–325.

    Article  CAS  Google Scholar 

  • Miller SL, DeMaria JE, Freier DO, Riegel AM, Clevenger CV . (2005). Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol Endocrinol 19: 939–949.

    Article  CAS  Google Scholar 

  • Mohler JL, Gregory CW, Ford III OH, Kim D, Weaver CM, Petrusz P et al. (2004). The androgen axis in recurrent prostate cancer. Clin Cancer Res 10: 440–448.

    Article  CAS  Google Scholar 

  • Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS et al. (2008). Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68: 4447–4454.

    Article  CAS  Google Scholar 

  • Movilla N, Bustelo XR . (1999). Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 19: 7870–7885.

    Article  CAS  Google Scholar 

  • O'Malley BW, Kumar R . (2009). Nuclear receptor coregulators in cancer biology. Cancer Res 69: 8217–8222.

    Article  CAS  Google Scholar 

  • Ouyang X, Jessen WJ, Al-Ahmadie H, Serio AM, Lin Y, Shih WJ et al. (2008). Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res 68: 2132–2144.

    Article  CAS  Google Scholar 

  • Palmby TR, Abe K, Der CJ . (2002). Critical role of the pleckstrin homology and cysteine-rich domains in Vav signaling and transforming activity. J Biol Chem 277: 39350–39359.

    Article  CAS  Google Scholar 

  • Patel V, Rosenfeldt HM, Lyons R, Servitja JM, Bustelo XR, Siroff M et al. (2007). Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis 28: 1145–1152.

    Article  CAS  Google Scholar 

  • Rapley J, Tybulewicz VL, Rittinger K . (2008). Crucial structural role for the PH and C1 domains of the Vav1 exchange factor. EMBO Rep 9: 655–661.

    Article  CAS  Google Scholar 

  • Savkur RS, Burris TP . (2004). The coactivator LXXLL nuclear receptor recognition motif. J Pept Res 63: 207–212.

    Article  CAS  Google Scholar 

  • Schmidt LJ, Regan KM, Anderson SK, Sun Z, Ballman KV, Tindall DJ . (2009). Effects of the 5 alpha-reductase inhibitor dutasteride on gene expression in prostate cancer xenografts. Prostate 69: 1730–1743.

    Article  CAS  Google Scholar 

  • Shen HC, Buchanan G, Butler LM, Prescott J, Henderson M, Tilley WD et al. (2005). GRIP1 mediates the interaction between the amino- and carboxyl-termini of the androgen receptor. Biol Chem 386: 69–74.

    Article  CAS  Google Scholar 

  • Tindall DJ, Scardino PJ . (2001). State of research for prostate cancer: excerpt from the report of the Prostate Cancer Progress Review Group. Urology 57: 28–30.

    Article  CAS  Google Scholar 

  • Trenkle T, McClelland M, Adlkofer K, Welsh J . (2000). Major transcript variants of VAV3, a new member of the VAV family of guanine nucleotide exchange factors. Gene 245: 139–149.

    Article  CAS  Google Scholar 

  • Varnai P, Bondeva T, Tamas P, Toth B, Buday L, Hunyady L et al. (2005). Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci 118: 4879–4888.

    Article  CAS  Google Scholar 

  • Wang Q, Carroll JS, Brown M . (2005). Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol cell 19: 631–642.

    Article  CAS  Google Scholar 

  • Xi S, Tie Y, Lu K, Zhang M, Yin X, Chen J et al. (2010). N-terminal PH domain and C-terminal auto-inhibitory region of CKIP-1 coordinate to determine its nucleus–plasma membrane shuttling. FEBS Lett 584: 1223–1230.

    Article  CAS  Google Scholar 

  • Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M et al. (2000). Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 20: 9212–9224.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Zafar Nawaz and his laboratory for advice on ChIP assays. We thank Drs Adena Rosenblatt, Omar Flores and Carlos Perez-Stable for helpful suggestions. Zhe Ma provided assistance with the mammalian two-hybrid assays. A National Institutes of Health Grant RO1CA132200 (to KLB) supported this work. LSL and FW were supported by US Department of Defense post-doctoral fellowship (PC060504); SR was an American Heart Association Predoctoral Fellow; CDF was supported by T32-HL007188 and AF acknowledges funding from R01GM083897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K L Burnstein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, S., Lyons, L., Fahrenholtz, C. et al. A novel nuclear role for the Vav3 nucleotide exchange factor in androgen receptor coactivation in prostate cancer. Oncogene 31, 716–727 (2012). https://doi.org/10.1038/onc.2011.273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.273

Keywords

This article is cited by

Search

Quick links