Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

NF-κB addiction and its role in cancer: ‘one size does not fit all’

Abstract

Activation of nuclear factor (NF)-κB, one of the most investigated transcription factors, has been found to control multiple cellular processes in cancer including inflammation, transformation, proliferation, angiogenesis, invasion, metastasis, chemoresistance and radioresistance. NF-κB is constitutively active in most tumor cells, and its suppression inhibits the growth of tumor cells, leading to the concept of ‘NF-κB addiction’ in cancer cells. Why NF-κB is constitutively and persistently active in cancer cells is not fully understood, but multiple mechanisms have been delineated including agents that activate NF-κB (such as viruses, viral proteins, bacteria and cytokines), signaling intermediates (such as mutant receptors, overexpression of kinases, mutant oncoproteins, degradation of IκBα, histone deacetylase, overexpression of transglutaminase and iNOS) and cross talk between NF-κB and other transcription factors (such as STAT3, HIF-1α, AP1, SP, p53, PPARγ, β-catenin, AR, GR and ER). As NF-κB is ‘pre-active’ in cancer cells through unrelated mechanisms, classic inhibitors of NF-κB (for example, bortezomib) are unlikely to mediate their anticancer effects through suppression of NF-κB. This review discusses multiple mechanisms of NF-κB activation and their regulation by multitargeted agents in contrast to monotargeted agents, thus ‘one size does not fit all’ cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aggarwal BB . (2004). Nuclear factor-kappaB: the enemy within. Cancer Cell 6: 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Gehlot P . (2009). Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 9: 351–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal BB, Vijayalekshmi RV, Sung B . (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15: 425–430.

    CAS  PubMed  Google Scholar 

  • Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB . (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69: 195–206.

    CAS  PubMed  Google Scholar 

  • Ahmad R, Raina D, Joshi MD, Kawano T, Ren J, Kharbanda S et al. (2009). MUC1-C oncoprotein functions as a direct activator of the nuclear factor-kappaB p65 transcription factor. Cancer Res 69: 7013–7021.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Raina D, Trivedi V, Ren J, Rajabi H, Kharbanda S et al. (2007). MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling. Nat Cell Biol 9: 1419–1427.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn KS, Aggarwal BB . (2005). Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann N Y Acad Sci 1056: 218–233.

    CAS  PubMed  Google Scholar 

  • Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . (1988). Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53: 549–554.

    CAS  PubMed  Google Scholar 

  • Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY et al. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465: 1084–1088.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Kunnumakkara AB, Harikumar KB, Ahn KS, Badmaev V, Aggarwal BB . (2008). Modification of cysteine residue in p65 subunit of nuclear factor-kappaB (NF-kappaB) by picroliv suppresses NF-kappaB-regulated gene products and potentiates apoptosis. Cancer Res 68: 8861–8870.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arun P, Brown MS, Ehsanian R, Chen Z, Van Waes C . (2009). Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer. Clin Cancer Res 15: 5974–5984.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner BP, Westerheide SD, Baldwin Jr AS . (2001). The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21: 7065–7077.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U et al. (2004). Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279: 51163–51171.

    CAS  PubMed  Google Scholar 

  • Basseres DS, Baldwin AS . (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25: 6817–6830.

    CAS  PubMed  Google Scholar 

  • Basseres DS, Ebbs A, Levantini E, Baldwin AS . (2010). Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res 70: 3537–3546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell DW . (2010). Our changing view of the genomic landscape of cancer. J Pathol 220: 231–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benezra M, Chevallier N, Morrison DJ, MacLachlan TK, El-Deiry WS, Licht JD . (2003). BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit. J Biol Chem 278: 26333–26341.

    CAS  PubMed  Google Scholar 

  • Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F et al. (2010). TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 17: 481–496.

    CAS  PubMed  Google Scholar 

  • Bhoj VG, Chen ZJ . (2009). Ubiquitylation in innate and adaptive immunity. Nature 458: 430–437.

    CAS  PubMed  Google Scholar 

  • Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM et al. (2010). Signatures of mutation and selection in the cancer genome. Nature 463: 893–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bijli KM, Fazal F, Minhajuddin M, Rahman A . (2008). Activation of Syk by protein kinase C-delta regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via tyrosine phosphorylation of RelA/p65. J Biol Chem 283: 14674–14684.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . (2004). Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 18: 103–112.

    CAS  PubMed  Google Scholar 

  • Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF et al. (2007). Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129: 1065–1079.

    CAS  PubMed  Google Scholar 

  • Bohuslav J, Chen LF, Kwon H, Mu Y, Greene WC . (2004). p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem 279: 26115–26125.

    CAS  PubMed  Google Scholar 

  • Braunstein S, Formenti SC, Schneider RJ . (2008). Acquisition of stable inducible up-regulation of nuclear factor-kappaB by tumor necrosis factor exposure confers increased radiation resistance without increased transformation in breast cancer cells. Mol Cancer Res 6: 78–88.

    CAS  PubMed  Google Scholar 

  • Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R et al. (2002). BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62: 6997–7000.

    CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424: 797–801.

    CAS  PubMed  Google Scholar 

  • Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT . (1999). Mutations in the IkBa gene in Hodgkin's disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18: 3063–3070.

    CAS  PubMed  Google Scholar 

  • Cao Y, Luo JL, Karin M . (2007). IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci USA 104: 15852–15857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapiro E, Radford-Weiss I, Bastard C, Luquet I, Lefebvre C, Callet-Bauchu E et al. (2008). The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia 22: 2123–2127.

    CAS  PubMed  Google Scholar 

  • Chapman NR, Perkins ND . (2000). Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1. J Biol Chem 275: 4719–4725.

    CAS  PubMed  Google Scholar 

  • Chariot A . (2009). The NF-kappaB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol 19: 404–413.

    CAS  PubMed  Google Scholar 

  • Chen L, Fischle W, Verdin E, Greene WC . (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293: 1653–1657.

    CAS  Google Scholar 

  • Chen LF, Greene WC . (2004). Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5: 392–401.

    CAS  PubMed  Google Scholar 

  • Chen LF, Mu Y, Greene WC . (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 21: 6539–6548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Parent L, Maniatis T . (1996). Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84: 853–862.

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Sun LJ . (2009). Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33: 275–286.

    CAS  PubMed  Google Scholar 

  • Cheng P, Zlobin A, Volgina V, Gottipati S, Osborne B, Simel EJ et al. (2001). Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol 167: 4458–4467.

    CAS  PubMed  Google Scholar 

  • Chew J, Biswas S, Shreeram S, Humaidi M, Wong ET, Dhillion MK et al. (2009). WIP1 phosphatase is a negative regulator of NF-kappaB signalling. Nat Cell Biol 11: 659–666.

    CAS  PubMed  Google Scholar 

  • Choudhary C, Muller-Tidow C, Berdel WE, Serve H . (2005). Signal transduction of oncogenic Flt3. Int J Hematol 82: 93–99.

    CAS  PubMed  Google Scholar 

  • Chow JY, Ban M, Wu HL, Nguyen F, Huang M, Chung H et al. (2010). TGF-beta downregulates PTEN via activation of NF-kappaB in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol 298: G275–G282.

    CAS  PubMed  Google Scholar 

  • Chung SW, Kang BY, Kim SH, Pak YK, Cho D, Trinchieri G et al. (2000). Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 275: 32681–32687.

    CAS  PubMed  Google Scholar 

  • Courtois G, Gilmore TD . (2006). Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 25: 6831–6843.

    CAS  PubMed  Google Scholar 

  • Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS . (2008). Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor i. Genes Dev 22: 1490–1500.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G et al. (2005). Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65: 7591–7595.

    CAS  PubMed  Google Scholar 

  • Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ et al. (1999). Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274: 32048–32054.

    CAS  PubMed  Google Scholar 

  • Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM . (2010). Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 115: 3541–3552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Miller SA, Wang HY, Xia W, Wen Y, Zhou BP et al. (2002). beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2: 323–334.

    CAS  PubMed  Google Scholar 

  • Deng L, Wang C, Spencer E, Yang L, Braun A, You J et al. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351–361.

    CAS  PubMed  Google Scholar 

  • Dhawan P, Su Y, Thu YM, Yu Y, Baugher P, Ellis DL et al. (2008). The lymphotoxin-beta receptor is an upstream activator of NF-kappaB-mediated transcription in melanoma cells. J Biol Chem 283: 15399–15408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M . (1997). A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388: 548–554.

    CAS  PubMed  Google Scholar 

  • Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464: 999–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy A, Kummar S . (2009). Targeting mitogen-activated protein kinase kinase (MEK) in solid tumors. Target Oncol 4: 267–273.

    PubMed  Google Scholar 

  • Duran A, Diaz-Meco MT, Moscat J . (2003). Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J 22: 3910–3918.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM et al. (2003). Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 102: 987–995.

    CAS  PubMed  Google Scholar 

  • Fan S, Gao M, Meng Q, Laterra JJ, Symons MH, Coniglio S et al. (2005). Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 24: 1749–1766.

    CAS  PubMed  Google Scholar 

  • Fan Y, Mao R, Zhao Y, Yu Y, Sun W, Song P et al. (2009). Tumor necrosis factor-alpha induces RelA degradation via ubiquitination at lysine 195 to prevent excessive nuclear factor-kappaB activation. J Biol Chem 284: 29290–29297.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franzoso G, Carlson L, Brown K, Daucher MB, Bressler P, Siebenlist U . (1996). Activation of the serum response factor by p65/NF-kappaB. EMBO J 15: 3403–3412.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galien R, Garcia T . (1997). Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res 25: 2424–2429.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gambaryan S, Kobsar A, Rukoyatkina N, Herterich S, Geiger J, Smolenski A et al. (2010). Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J Biol Chem 285: 18352–18363.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao N, Asamitsu K, Hibi Y, Ueno T, Okamoto T . (2008). AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65. J Biol Chem 283: 7834–7843.

    CAS  PubMed  Google Scholar 

  • Garcia M, Jemal A, Ward EM, Center MM, Hao Y, Siegel RL et al. (2007). Global Cancer Facts & Figures 2007. American Cancer Society 1–48 (http://www.cancer.org).

  • Garcia-Pineres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL et al. (2001). Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276: 39713–39720.

    CAS  PubMed  Google Scholar 

  • Ge J, Xu H, Li T, Zhou Y, Zhang Z, Li S et al. (2009). A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci USA 106: 13725–13730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Karin M . (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 (Suppl): S81–S96.

    CAS  PubMed  Google Scholar 

  • Gilmore TD . (2003). The Re1/NF-kappa B/I kappa B signal transduction pathway and cancer. Cancer Treat Res 115: 241–265.

    CAS  PubMed  Google Scholar 

  • Gilmore TD, Kalaitzidis D, Liang MC, Starczynowski DT . (2004). The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 23: 2275–2286.

    CAS  PubMed  Google Scholar 

  • Giri DK, Aggarwal BB . (1998). Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates. J Biol Chem 273: 14008–14014.

    CAS  PubMed  Google Scholar 

  • Gloire G, Dejardin E, Piette J . (2006). Extending the nuclear roles of IkappaB kinase subunits. Biochem Pharmacol 72: 1081–1089.

    CAS  PubMed  Google Scholar 

  • Gong R, Rifai A, Ge Y, Chen S, Dworkin LD . (2008). Hepatocyte growth factor suppresses proinflammatory NFkappaB activation through GSK3beta inactivation in renal tubular epithelial cells. J Biol Chem 283: 7401–7410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296.

    CAS  PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M . (2010). Immunity, inflammation, and cancer. Cell 140: 883–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grivennikov SI, Karin M . (2010). Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21: 11–19.

    CAS  PubMed  Google Scholar 

  • Grosjean-Raillard J, Ades L, Boehrer S, Tailler M, Fabre C, Braun T et al. (2008). Flt3 receptor inhibition reduces constitutive NFkappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Apoptosis 13: 1148–1161.

    CAS  PubMed  Google Scholar 

  • GuhaThakurta D . (2006). Computational identification of transcriptional regulatory elements in DNA sequence. Nucleic Acids Res 34: 3585–3598.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Giancotti FG . (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5: 816–826.

    CAS  PubMed  Google Scholar 

  • Hacker H, Karin M . (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006: re13.

    PubMed  Google Scholar 

  • Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S et al. (2009). Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood 113: 2003–2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hideshima T, Chauhan D, Kiziltepe T, Ikeda H, Okawa Y, Podar K et al. (2009a). Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood 113: 5228–5236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K et al. (2009b). Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114: 1046–1052.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoberg JE, Popko AE, Ramsey CS, Mayo MW . (2006). IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 26: 457–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR . (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86–90.

    CAS  PubMed  Google Scholar 

  • Hoffmann A, Xia Y, Verma IM . (2007). Inflammatory tales of liver cancer. Cancer Cell 11: 99–101.

    CAS  PubMed  Google Scholar 

  • Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY et al. (2004). IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117: 225–237.

    CAS  PubMed  Google Scholar 

  • Huang Q, Yang J, Lin Y, Walker C, Cheng J, Liu ZG et al. (2004). Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5: 98–103.

    CAS  PubMed  Google Scholar 

  • Hunter KD, Parkinson EK, Harrison PR . (2005). Profiling early head and neck cancer. Nat Rev Cancer 5: 127–135.

    CAS  PubMed  Google Scholar 

  • Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM et al. (2009). Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell 34: 461–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hymowitz SG, Wertz IE . (2010). A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 10: 332–341.

    CAS  PubMed  Google Scholar 

  • Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C et al. (1996). Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86: 787–798.

    CAS  PubMed  Google Scholar 

  • Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, International Cancer Genome Consortium et al. (2010). International network of cancer genome projects. Nature 464: 993–998.

    CAS  PubMed  Google Scholar 

  • Ishinaga H, Jono H, Lim JH, Komatsu K, Xu X, Lee J et al. (2009). Synergistic induction of nuclear factor-kappaB by transforming growth factor-beta and tumour necrosis factor-alpha is mediated by protein kinase A-dependent RelA acetylation. Biochem J 417: 583–591.

    CAS  PubMed  Google Scholar 

  • Israel A . (2010). The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2: a000158.

    PubMed  PubMed Central  Google Scholar 

  • Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG et al. (2007). Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene 26: 1385–1397.

    CAS  PubMed  Google Scholar 

  • Jamaluddin M, Tian B, Boldogh I, Garofalo RP, Brasier AR . (2009). Respiratory syncytial virus infection induces a reactive oxygen species-MSK1-phospho-Ser-276 RelA pathway required for cytokine expression. J Virol 83: 10605–10615.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong SJ, Radonovich M, Brady JN, Pise-Masison CA . (2004). HTLV-I Tax induces a novel interaction between p65/RelA and p53 that results in inhibition of p53 transcriptional activity. Blood 104: 1490–1497.

    CAS  PubMed  Google Scholar 

  • Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J et al. (2010). High expression levels of IKKalpha and IKKbeta are necessary for the malignant properties of liver cancer. Int J Cancer 126: 1263–1274.

    CAS  PubMed  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kai M, Yasuda S, Imai S, Toyota M, Kanoh H, Sakane F . (2009). Diacylglycerol kinase alpha enhances protein kinase Czeta-dependent phosphorylation at Ser311 of p65/RelA subunit of nuclear factor-kappaB. FEBS Lett 583: 3265–3268.

    CAS  PubMed  Google Scholar 

  • Karin M . (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    CAS  PubMed  Google Scholar 

  • Karin M . (2009). NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1: a000141.

    PubMed  PubMed Central  Google Scholar 

  • Karin M, Cao Y, Greten FR, Li ZW . (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2: 301–310.

    CAS  PubMed  Google Scholar 

  • Kato Jr T., Delhase M, Hoffmann A, Karin M . (2003). CK2 is a C-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response. Mol Cell 12: 829–839.

    CAS  PubMed  Google Scholar 

  • Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12: 131–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SP, Park JW, Lee SH, Lim JH, Jang BC, Jang IH et al. (2004). Homeodomain protein CDX2 regulates COX-2 expression in colorectal cancer. Biochem Biophys Res Commun 315: 93–99.

    CAS  PubMed  Google Scholar 

  • Kleinberg L, Dong HP, Holth A, Risberg B, Trope CG, Nesland JM et al. (2009). Cleaved caspase-3 and nuclear factor-kappaB p65 are prognostic factors in metastatic serous ovarian carcinoma. Hum Pathol 40: 795–806.

    CAS  PubMed  Google Scholar 

  • Kobori M, Yang Z, Gong D, Heissmeyer V, Zhu H, Jung YK et al. (2004). Wedelolactone suppresses LPS-induced caspase-11 expression by directly inhibiting the IKK complex. Cell Death Differ 11: 123–130.

    CAS  PubMed  Google Scholar 

  • Koumakpayi IH, Le Page C, Mes-Masson AM, Saad F . (2010). Hierarchical clustering of immunohistochemical analysis of the activated ErbB/PI3K/Akt/NF-kappaB signalling pathway and prognostic significance in prostate cancer. Br J Cancer 102: 1163–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G . (2003). The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424: 801–805.

    CAS  PubMed  Google Scholar 

  • Kumar A, Lin Z, SenBanerjee S, Jain MK . (2005). Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases. Mol Cell Biol 25: 5893–5903.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. (2001). Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    CAS  PubMed  Google Scholar 

  • Lawrence T, Bebien M, Liu GY, Nizet V, Karin M . (2005). IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 434: 1138–1143.

    CAS  PubMed  Google Scholar 

  • Le Page C, Koumakpayi IH, Lessard L, Mes-Masson AM, Saad F . (2005). EGFR and Her-2 regulate the constitutive activation of NF-kappaB in PC-3 prostate cancer cells. Prostate 65: 130–140.

    CAS  PubMed  Google Scholar 

  • Ledford H . (2010). Big science: The cancer genome challenge. Nature 464: 972–974.

    CAS  PubMed  Google Scholar 

  • Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y et al. (2007). IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130: 440–455.

    CAS  PubMed  Google Scholar 

  • Lee SK, Kim JH, Lee YC, Cheong J, Lee JW . (2000). Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor. J Biol Chem 275: 12470–12474.

    CAS  PubMed  Google Scholar 

  • Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R . (2005). Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells 23: 16–43.

    CAS  PubMed  Google Scholar 

  • Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al. (2008). Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319: 1676–1679.

    CAS  PubMed  Google Scholar 

  • Li C, Chen S, Yue P, Deng X, Lonial S, Khuri FR et al. (2010). Proteasome inhibitor PS-341 (bortezomib) induces calpain-dependent IkappaB(alpha) degradation. J Biol Chem 285: 16096–16104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CA, Yao F, Wong JJ, George J, Xu H, Chiu KP et al. (2007). Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation. Mol Cell 27: 622–635.

    CAS  PubMed  Google Scholar 

  • Linnekin D . (1999). Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol 31: 1053–1074.

    CAS  PubMed  Google Scholar 

  • Liptay S, Weber CK, Ludwig L, Wagner M, Adler G, Schmid RM . (2003). Mitogenic and antiapoptotic role of constitutive NF-kappaB/Rel activity in pancreatic cancer. Int J Cancer 105: 735–746.

    CAS  PubMed  Google Scholar 

  • Liu B, Yang R, Wong KA, Getman C, Stein N, Teitell MA et al. (2005). Negative regulation of NF-kappaB signaling by PIAS1. Mol Cell Biol 25: 1113–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Guerra M, Colomer D . (2010). NF-kappaB as a therapeutic target in chronic lymphocytic leukemia. Expert Opin Ther Targets 14: 275–288.

    CAS  PubMed  Google Scholar 

  • Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D et al. (2006). Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev 20: 1331–1342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M et al. (2010). Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci USA 107: 46–51.

    CAS  PubMed  Google Scholar 

  • Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R et al. (2007). Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11: 119–132.

    CAS  PubMed  Google Scholar 

  • Maeda G, Chiba T, Kawashiri S, Satoh T, Imai K . (2007). Epigenetic inactivation of IkappaB Kinase-alpha in oral carcinomas and tumor progression. Clin Cancer Res 13: 5041–5047.

    CAS  PubMed  Google Scholar 

  • Maeda S, Kamata H, Luo JL, Leffert H, Karin M . (2005). IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121: 977–990.

    CAS  PubMed  Google Scholar 

  • Maine GN, Mao X, Komarck CM, Burstein E . (2007). COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. EMBO J 26: 436–447.

    CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F . (2008). Cancer-related inflammation. Nature 454: 436–444.

    CAS  PubMed  Google Scholar 

  • Mao X, Gluck N, Li D, Maine GN, Li H, Zaidi IW et al. (2009). GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA. Genes Dev 23: 849–861.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F et al. (2007). A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia 21: 1532–1544.

    CAS  PubMed  Google Scholar 

  • Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C et al. (2009). Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 462: 104–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto S, Chiao PJ, Verma IM . (1994). Enhanced I kappa B alpha degradation is responsible for constitutive NF-kappa B activity in mature murine B-cell lines. Mol Cell Biol 14: 3276–3282.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS . (2009). Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 45: 324–334.

    CAS  PubMed  Google Scholar 

  • Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A et al. (2008). The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118: 868–878.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosialos G, Gilmore TD . (1993). v-Rel and c-Rel are differentially affected by mutations at a consensus protein kinase recognition sequence. Oncogene 8: 721–730.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Manna SK, Aggarwal BB . (2000). Pervanadate-induced nuclear factor-kappaB activation requires tyrosine phosphorylation and degradation of IkappaBalpha. Comparison with tumor necrosis factor-alpha. J Biol Chem 275: 8549–8555.

    CAS  PubMed  Google Scholar 

  • Na SY, Kang BY, Chung SW, Han SJ, Ma X, Trinchieri G et al. (1999). Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFkappaB. J Biol Chem 274: 7674–7680.

    CAS  PubMed  Google Scholar 

  • Naoki K, Chen TH, Richards WG, Sugarbaker DJ, Meyerson M . (2002). Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res 62: 7001–7003.

    CAS  PubMed  Google Scholar 

  • Nawata R, Yujiri T, Nakamura Y, Ariyoshi K, Takahashi T, Sato Y et al. (2003). MEK kinase 1 mediates the antiapoptotic effect of the Bcr-Abl oncogene through NF-kappaB activation. Oncogene 22: 7774–7780.

    CAS  PubMed  Google Scholar 

  • Neil JR, Schiemann WP . (2008). Altered TAB1:I kappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression. Cancer Res 68: 1462–1470.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB et al. (1992). Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 89: 6319–6323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Giancotti FG . (2004). Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell 6: 471–483.

    CAS  PubMed  Google Scholar 

  • O'Dea EL, Kearns JD, Hoffmann A . (2008). UV as an amplifier rather than inducer of NF-kappaB activity. Mol Cell 30: 632–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500.

    CAS  PubMed  Google Scholar 

  • Palvimo JJ, Reinikainen P, Ikonen T, Kallio PJ, Moilanen A, Janne OA . (1996). Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271: 24151–24156.

    CAS  PubMed  Google Scholar 

  • Pandey MK, Sandur SK, Sung B, Sethi G, Kunnumakkara AB, Aggarwal BB . (2007). Butein, a tetrahydroxychalcone, inhibits nuclear factor (NF)-kappaB and NF-kappaB-regulated gene expression through direct inhibition of IkappaBalpha kinase beta on cysteine 179 residue. J Biol Chem 282: 17340–17350.

    CAS  PubMed  Google Scholar 

  • Pandey MK, Sung B, Kunnumakkara AB, Sethi G, Chaturvedi MM, Aggarwal BB . (2008). Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis. Cancer Res 68: 5370–5379.

    CAS  PubMed  Google Scholar 

  • Park J, Lee JH, La M, Jang MJ, Chae GW, Kim SB et al. (2007). Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx. J Mol Biol 368: 388–397.

    CAS  PubMed  Google Scholar 

  • Park KJ, Krishnan V, O'Malley BW, Yamamoto Y, Gaynor RB . (2005). Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18: 71–82.

    CAS  PubMed  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel V, Rosenfeldt HM, Lyons R, Servitja JM, Bustelo XR, Siroff M et al. (2007). Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis 28: 1145–1152.

    CAS  PubMed  Google Scholar 

  • Pepper C, Hewamana S, Brennan P, Fegan C . (2009). NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 5: 1027–1037.

    CAS  PubMed  Google Scholar 

  • Perkins ND . (2006). Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 25: 6717–6730.

    CAS  PubMed  Google Scholar 

  • Perkins ND, Edwards NL, Duckett CS, Agranoff AB, Schmid RM, Nabel GJ . (1993). A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J 12: 3551–3558.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pianetti S, Arsura M, Romieu-Mourez R, Coffey RJ, Sonenshein GE . (2001). Her-2/neu overexpression induces NF-kappaB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IkappaB-alpha that can be inhibited by the tumor suppressor PTEN. Oncogene 20: 1287–1299.

    CAS  PubMed  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: 461–466.

    CAS  PubMed  Google Scholar 

  • Pileri SA, Zinzani PL, Gaidano G, Falini B, Gaulard P, Zucca E et al. (2003). Pathobiology of primary mediastinal B-cell lymphoma. Leuk Lymphoma 44 (Suppl 3): S21–S26.

    CAS  PubMed  Google Scholar 

  • Planavila A, Rodriguez-Calvo R, Jove M, Michalik L, Wahli W, Laguna JC et al. (2005). Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res 65: 832–841.

    CAS  PubMed  Google Scholar 

  • Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD et al. (2010a). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463: 191–196.

    CAS  PubMed  Google Scholar 

  • Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D et al. (2010b). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463: 184–190.

    CAS  PubMed  Google Scholar 

  • Politi C, Del Turco D, Sie JM, Golinski PA, Tegeder I, Deller T et al. (2008). Accumulation of phosphorylated I kappaB alpha and activated IKK in nodes of Ranvier. Neuropathol Appl Neurobiol 34: 357–365.

    CAS  PubMed  Google Scholar 

  • Prasad S, Ravindran J, Aggarwal BB . (2010). NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336: 25–37.

    CAS  PubMed  Google Scholar 

  • Ramsey CS, Yeung F, Stoddard PB, Li D, Creutz CE, Mayo MW . (2008). Copine-I represses NF-kappaB transcription by endoproteolysis of p65. Oncogene 27: 3516–3526.

    CAS  PubMed  Google Scholar 

  • Ray A, Prefontaine KE . (1994). Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 91: 752–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reber L, Vermeulen L, Haegeman G, Frossard N . (2009). Ser276 phosphorylation of NF-kB p65 by MSK1 controls SCF expression in inflammation. PLoS One 4: e4393.

    PubMed  PubMed Central  Google Scholar 

  • Renner F, Moreno R, Schmitz ML . (2010). SUMOylation-dependent localization of IKKepsilon in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death. Mol Cell 37: 503–515.

    CAS  PubMed  Google Scholar 

  • Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin Jr AS . (1998). A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev 12: 968–981.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roukos DH . (2010). Novel clinico-genome network modeling for revolutionizing genotype-phenotype-based personalized cancer care. Expert Rev Mol Diagn 10: 33–48.

    CAS  PubMed  Google Scholar 

  • Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A et al. (2003). Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278: 36916–36923.

    CAS  PubMed  Google Scholar 

  • Salminen A, Paimela T, Suuronen T, Kaarniranta K . (2008). Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. Immunol Lett 117: 9–15.

    CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  • Scheidereit C . (2006). IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25: 6685–6705.

    CAS  PubMed  Google Scholar 

  • Schmitz ML, Stelzer G, Altmann H, Meisterernst M, Baeuerle PA . (1995). Interaction of the COOH-terminal transactivation domain of p65 NF-kappa B with TATA-binding protein, transcription factor IIB, and coactivators. J Biol Chem 270: 7219–7226.

    CAS  PubMed  Google Scholar 

  • Scortegagna M, Cataisson C, Martin RJ, Hicklin DJ, Schreiber RD, Yuspa SH et al. (2008). HIF-1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine stromal remodeling. Blood 111: 3343–3354.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sen R, Baltimore D . (1986). Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47: 921–928.

    CAS  PubMed  Google Scholar 

  • Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G et al. (2001). Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293: 1495–1499.

    CAS  PubMed  Google Scholar 

  • Sethi G, Ahn KS, Aggarwal BB . (2008). Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res 6: 1059–1070.

    CAS  PubMed  Google Scholar 

  • Sethi G, Ahn KS, Chaturvedi MM, Aggarwal BB . (2007). Epidermal growth factor (EGF) activates nuclear factor-kappaB through IkappaBalpha kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of IkappaBalpha. Oncogene 26: 7324–7332.

    CAS  PubMed  Google Scholar 

  • Sgarbanti M, Remoli AL, Marsili G, Ridolfi B, Borsetti A, Perrotti E et al. (2008). IRF-1 is required for full NF-kappaB transcriptional activity at the human immunodeficiency virus type 1 long terminal repeat enhancer. J Virol 82: 3632–3641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shembade N, Ma A, Harhaj EW . (2010). Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327: 1135–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sher T, Dy GK, Adjei AA . (2008). Small cell lung cancer. Mayo Clin Proc 83: 355–367.

    CAS  PubMed  Google Scholar 

  • Shishodia S, Aggarwal BB . (2004). Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates activation of cigarette smoke-induced nuclear factor (NF)-kappaB by suppressing activation of IkappaBalpha kinase in human non-small cell lung carcinoma: correlation with suppression of cyclin D1, COX-2, and matrix metalloproteinase-9. Cancer Res 64: 5004–5012.

    CAS  PubMed  Google Scholar 

  • Singh S, Aggarwal BB . (1995). Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270: 24995–25000.

    CAS  PubMed  Google Scholar 

  • Singh S, Darnay BG, Aggarwal BB . (1996). Site-specific tyrosine phosphorylation of IkappaBalpha negatively regulates its inducible phosphorylation and degradation. J Biol Chem 271: 31049–31054.

    CAS  PubMed  Google Scholar 

  • Smith D, Shimamura T, Barbera S, Bejcek BE . (2008). NF-kappaB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 307: 141–147.

    CAS  PubMed  Google Scholar 

  • Son PS, Park SA, Na HK, Jue DM, Surh YJ . (2010). Piceatannol, a catechol-type polyphenol, inhibits phorb. Carcinogenesis 31: 1442–1449.

    CAS  PubMed  Google Scholar 

  • Sriskantharajah S, Ley SC . (2010). Cell biology. Turning off inflammation signaling. Science 327: 1093–1094.

    CAS  PubMed  Google Scholar 

  • Staudt LM . (2010). Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2: a000109.

    PubMed  PubMed Central  Google Scholar 

  • Stein B, Baldwin Jr AS, Ballard DW, Greene WC, Angel P, Herrlich P . (1993). Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 12: 3879–3891.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrecher KA, Wilson III W, Cogswell PC, Baldwin AS . (2005). Glycogen synthase kinase 3beta functions to specify gene-specific, NF-kappaB-dependent transcription. Mol Cell Biol 25: 8444–8455.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J et al. (2004). Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431: 525–526.

    CAS  PubMed  Google Scholar 

  • Stirewalt DL, Radich JP . (2003). The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3: 650–665.

    CAS  PubMed  Google Scholar 

  • Sun HZ, Yang TW, Zang WJ, Wu SF . (2010). Dehydroepiandrosterone-induced proliferation of prostatic epithelial cell is mediated by NFKB via PI3K/AKT signaling pathway. J Endocrinol 204: 311–318.

    CAS  PubMed  Google Scholar 

  • Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M et al. (2008). Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 111: 4880–4891.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tago K, Funakoshi-Tago M, Sakinawa M, Mizuno N, Itoh H . (2010). {kappa}B-Ras is a nuclear-cytoplasmic small GTPase that inhibits the NF-{kappa}B activation through the suppression of transcriptional activation of p65/RelA. J Biol Chem 285: 30622–30633.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB . (2003). Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 278: 24233–24241.

    CAS  PubMed  Google Scholar 

  • Takahashi S, Harigae H, Ishii KK, Inomata M, Fujiwara T, Yokoyama H et al. (2005). Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6. Leuk Res 29: 893–899.

    CAS  PubMed  Google Scholar 

  • Tang X, Liu D, Shishodia S, Ozburn N, Behrens C, Lee JJ et al. (2006). Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer 107: 2637–2646.

    CAS  PubMed  Google Scholar 

  • Tenen DG . (2003). Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3: 89–101.

    CAS  PubMed  Google Scholar 

  • Thomas SM, Bhola NE, Zhang Q, Contrucci SC, Wentzel AL, Freilino ML et al. (2006). Cross-talk between G protein-coupled receptor and epidermal growth factor receptor signaling pathways contributes to growth and invasion of head and neck squamous cell carcinoma. Cancer Res 66: 11831–11839.

    CAS  PubMed  Google Scholar 

  • Toualbi-Abed K, Daniel F, Guller MC, Legrand A, Mauriz JL, Mauviel A et al. (2008). Jun D cooperates with p65 to activate the proximal kappaB site of the cyclin D1 promoter: role of PI3K/PDK-1. Carcinogenesis 29: 536–543.

    CAS  PubMed  Google Scholar 

  • Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G . (2003). CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424: 793–796.

    CAS  PubMed  Google Scholar 

  • Vainer GW, Pikarsky E, Ben-Neriah Y . (2008). Contradictory functions of NF-kappaB in liver physiology and cancer. Cancer Lett 267: 182–188.

    CAS  PubMed  Google Scholar 

  • Vallabhapurapu S, Karin M . (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27: 693–733.

    CAS  PubMed  Google Scholar 

  • Van Waes C, Yu M, Nottingham L, Karin M . (2007). Inhibitor-kappaB kinase in tumor promotion and suppression during progression of squamous cell carcinoma. Clin Cancer Res 13: 4956–4959.

    CAS  PubMed  Google Scholar 

  • Vatsyayan J, Qing G, Xiao G, Hu J . (2008). SUMO1 modification of NF-kappaB2/p100 is essential for stimuli-induced p100 phosphorylation and processing. EMBO Rep 9: 885–890.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vereecke L, Beyaert R, van Loo G . (2009). The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 30: 383–391.

    CAS  PubMed  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G . (2003). Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J 22: 1313–1324.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale-Cross L, Amornphimoltham P, Fisher G, Molinolo AA, Gutkind JS . (2004). Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis. Cancer Res 64: 8804–8807.

    CAS  PubMed  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ . (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346–351.

    CAS  PubMed  Google Scholar 

  • Wang D, Westerheide SD, Hanson JL, Baldwin Jr AS . (2000). Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 275: 32592–32597.

    CAS  PubMed  Google Scholar 

  • Wang H, Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN . (2004). Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 84: 941–951.

    CAS  PubMed  Google Scholar 

  • Warren JL, Mariotto AB, Meekins A, Topor M, Brown ML . (2008). Current and future utilization of services from medical oncologists. J Clin Oncol 26: 3242–3247.

    PubMed  Google Scholar 

  • Werner SL, Barken D, Hoffmann A . (2005). Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309: 1857–1861.

    CAS  PubMed  Google Scholar 

  • Wieland GD, Nehmann N, Muller D, Eibel H, Siebenlist U, Suhnel J et al. (2005). Early growth response proteins EGR-4 and EGR-3 interact with immune inflammatory mediators NF-kappaB p50 and p65. J Cell Sci 118: 3203–3212.

    CAS  PubMed  Google Scholar 

  • Wilson III W, Baldwin AS . (2008). Maintenance of constitutive IkappaB kinase activity by glycogen synthase kinase-3alpha/beta in pancreatic cancer. Cancer Res 68: 8156–8163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wittwer T, Schmitz ML . (2008). NIK and Cot cooperate to trigger NF-kappaB p65 phosphorylation. Biochem Biophys Res Commun 371: 294–297.

    CAS  PubMed  Google Scholar 

  • Wolf JS, Chen Z, Dong G, Sunwoo JB, Bancroft CC, Capo DE et al. (2001). IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin Cancer Res 7: 1812–1820.

    CAS  PubMed  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science 318: 1108–1113.

    CAS  PubMed  Google Scholar 

  • Wright CJ, Zhuang T, La P, Yang G, Dennery PA . (2009). Hyperoxia-induced NF-kappaB activation occurs via a maturationally sensitive atypical pathway. Am J Physiol Lung Cell Mol Physiol 296: L296–L306.

    CAS  PubMed  Google Scholar 

  • Wu ZH, Miyamoto S . (2007). Many faces of NF-kappaB signaling induced by genotoxic stress. J Mol Med 85: 1187–1202.

    CAS  PubMed  Google Scholar 

  • Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F et al. (1998). Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93: 1231–1240.

    CAS  PubMed  Google Scholar 

  • Yang J, Splittgerber R, Yull FE, Kantrow S, Ayers GD, Karin M et al. (2010a). Conditional ablation of Ikkb inhibits melanoma tumor development in mice. J Clin Invest 120: 2563–2574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SR, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I . (2007). Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 292: L567–L576.

    CAS  PubMed  Google Scholar 

  • Yang XD, Tajkhorshid E, Chen LF . (2010b). Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol Cell Biol 30: 2170–2180.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23: 2369–2380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Kumar A, Koyama Y, Peng H, Arman A, Boch JA et al. (2004). Interleukin 1 activates STAT3/nuclear factor-kappaB cross-talk via a unique TRAF6- and p65-dependent mechanism. J Biol Chem 279: 1768–1776.

    CAS  PubMed  Google Scholar 

  • Yu Z, Kone BC . (2004). The STAT3 DNA-binding domain mediates interaction with NF-kappaB p65 and iuducible nitric oxide synthase transrepression in mesangial cells. J Am Soc Nephrol 15: 585–591.

    CAS  PubMed  Google Scholar 

  • Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, Hiscott J et al. (2007). The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol 8: 592–600.

    CAS  PubMed  Google Scholar 

  • Zhou W, Cao Q, Peng Y, Zhang QJ, Castrillon DH, DePinho RA et al. (2009). FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology 137: 1403–1414.

    CAS  PubMed  Google Scholar 

  • Zhu F, Park E, Liu B, Xia X, Fischer SM, Hu Y . (2009). Critical role of IkappaB kinase alpha in embryonic skin development and skin carcinogenesis. Histol Histopathol 24: 265–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Xia X, Liu B, Shen J, Hu Y, Person M . (2007). IKKalpha shields 14-3-3sigma, a G(2)/M cell cycle checkpoint gene, from hypermethylation, preventing its silencing. Mol Cell 27: 214–227.

    CAS  PubMed  Google Scholar 

  • Zwergal A, Quirling M, Saugel B, Huth KC, Sydlik C, Poli V et al. (2006). C/EBP beta blocks p65 phosphorylation and thereby NF-kappa B-mediated transcription in TNF-tolerant cells. J Immunol 177: 665–672.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tamara Locke for carefully editing the manuscript. Dr Aggarwal is the Ransom Horne, Jr, Professor of Cancer Research. This work was supported by a grant from the Clayton Foundation for Research (B.B.A.), a core grant from the National Institutes of Health (CA-16 672), a program project grant from National Institutes of Health (NIH CA-124787-01A2), and a grant from the Center for Targeted Therapy of MD Anderson Cancer Center. M.M.C. thanks the University of Delhi, Department of Science & Technology, India-PURSE grant Dean(R)/2010/1142 and MD Anderson Cancer Center for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M M Chaturvedi or B B Aggarwal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, M., Sung, B., Yadav, V. et al. NF-κB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30, 1615–1630 (2011). https://doi.org/10.1038/onc.2010.566

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.566

Keywords

This article is cited by

Search

Quick links