Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors

Abstract

c-Kit tyrosine kinase receptor and its ligand stem cell factor have multiple functions during development, whereas in adulthood they are mostly needed for stem cell (SC) maintenance and mast cell (MC) biology. c-Kit plays an essential tumor-cell-intrinsic role in many types of cancer, either providing the tumorigenic force when aberrantly activated or conferring stem-like features characterizing the most aggressive variants. A tumor-cell-extrinsic role occurs through c-Kit-dependent accessory cells (such as MCs) that infiltrate tumors and deeply influence their progression. c-Kit-targeted therapy with tyrosine kinase inhibitors (TKIs) may ideally work against both tumor and stromal cells. Here, we summarize the tumor-intrinsic and -extrinsic roles of c-Kit in cancer and discuss TKIs with their on- and off-targets, with a special emphasis on MCs as paradigmatic c-Kit-dependent accomplices for tumor progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Anderson DM, Williams DE, Tushinski R, Gimpel S, Eisenman J, Cannizzaro LA et al. (1991). Alternate splicing of mRNAs encoding human mast cell growth factor and localization of the gene to chromosome 12q22-q24. Cell Growth Differ 2: 373–378.

    CAS  PubMed  Google Scholar 

  • Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17: 121–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaven MA . (2009). Our perception of the mast cell from Paul Ehrlich to now. Eur J Immunol 39: 11–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellone G, Smirne C, Carbone A, Buffolino A, Scirelli T, Prati A et al. (2006). KIT/stem cell factor expression in premalignant and malignant lesions of the colon mucosa in relationship to disease progression and outcomes. Int J Oncol 29: 851–859.

    CAS  PubMed  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrozpe G, Timokhina I, Yukl S, Tajima Y, Ono M, Zelenetz AD et al. (1999). The W(sh), W(57), and Ph Kit expression mutations define tissue-specific control elements located between −23 and −154 kb upstream of Kit. Blood 94: 2658–2666.

    CAS  PubMed  Google Scholar 

  • Besmer P, Murphy JE, George PC, Qiu FH, Bergold PJ, Lederman L et al. (1986). A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 320: 415–421.

    Article  CAS  PubMed  Google Scholar 

  • Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M et al. (2010). In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proc Natl Acad Sci USA 107: 6430–6435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodemer C, Hermine O, Palmerini F, Yang Y, Grandpeix-Guyodo C, Leventhal PS et al. (2010). Pediatric mastocytosis is a clonal disease associated with D816V and other activating c-KIT mutations. J Invest Dermatol 130: 804–815.

    Article  CAS  PubMed  Google Scholar 

  • Borg C, Terme M, Taieb J, Menard C, Flament C, Robert C et al. (2004). Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114: 379–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broudy VC . (1997). Stem cell factor and hematopoiesis. Blood 90: 1345–1364.

    CAS  PubMed  Google Scholar 

  • Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A . (1988). The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335: 88–89.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Schmitt A, Giannopoulos K, Chen B, Rojewski M, Dohner H et al. (2007). Imatinib impairs the proliferation and function of CD4+CD25+ regulatory T cells in a dose-dependent manner. Int J Oncol 31: 1133–1139.

    CAS  PubMed  Google Scholar 

  • Colombo MP, Piconese S . (2009). Polyps wrap mast cells and Treg within tumorigenic tentacles. Cancer Res 69: 5619–5622.

    Article  CAS  PubMed  Google Scholar 

  • Corless CL, Heinrich MC . (2008). Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol 3: 557–586.

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13: 1382–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z . (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crivellato E, Nico B, Ribatti D . (2008). Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. (2005). Distinct sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  • Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J et al. (2006). Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368: 1329–1338.

    Article  CAS  PubMed  Google Scholar 

  • Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ et al. (2002). Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347: 472–480.

    Article  CAS  PubMed  Google Scholar 

  • Dietz AB, Souan L, Knutson GJ, Bulur PA, Litzow MR, Vuk-Pavlovic S . (2004). Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 104: 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil P, Letard S, Ciufolini M, Gros L, Humbert M, Casteran N et al. (2009). Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One 4: e7258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freier K, Flechtenmacher C, Walch A, Devens F, Muhling J, Lichter P et al. (2005). Differential KIT expression in histological subtypes of adenoid cystic carcinoma (ACC) of the salivary gland. Oral Oncol 41: 934–939.

    Article  CAS  PubMed  Google Scholar 

  • Fritsche-Polanz R, Fritz M, Huber A, Sotlar K, Sperr WR, Mannhalter C et al. (2010). High frequency of concomitant mastocytosis in patients with acute myeloid leukemia exhibiting the transforming KIT mutation D816V. Mol Oncol 4: 335–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frossi B, Gri G, Tripodo C, Pucillo C . (2010). Exploring a regulatory role for mast cells: ‘MCregs’? Trends Immunol 31: 97–102.

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nagaraj S . (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9: 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd SJ, Ashman LK . (1985). A murine monoclonal antibody specific for a cell-surface antigen expressed by a subgroup of human myeloid leukaemias. Leuk Res 9: 1329–1336.

    Article  CAS  PubMed  Google Scholar 

  • Galinsky DS, Nechushtan H . (2008). Mast cells and cancer-no longer just basic science. Crit Rev Oncol Hematol 68: 115–130.

    Article  PubMed  Google Scholar 

  • Galli SJ, Grimbaldeston M, Tsai M . (2008). Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8: 478–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli SJ, Tsai M, Wershil BK . (1993). The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol 142: 965–974.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geissler EN, Ryan MA, Housman DE . (1988). The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55: 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Gilfillan AM, Rivera J . (2009). The tyrosine kinase network regulating mast cell activation. Immunol Rev 228: 149–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleixner KV, Mayerhofer M, Aichberger KJ, Derdak S, Sonneck K, Bohm A et al. (2006). PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 107: 752–759.

    Article  CAS  PubMed  Google Scholar 

  • Gomes AL, Reis-Filho JS, Lopes JM, Martinho O, Lambros MB, Martins A et al. (2007). Molecular alterations of KIT oncogene in gliomas. Cell Oncol 29: 399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gounaris E, Blatner NR, Dennis K, Magnusson F, Gurish MF, Strom TB et al. (2009). T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 69: 5490–5497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F et al. (2007). Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 104: 19977–19982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gri G, Piconese S, Frossi B, Manfroi V, Merluzzi S, Tripodo C et al. (2008). CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29: 771–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ . (2005). Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167: 835–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ . (2007). Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8: 1095–1104.

    Article  CAS  PubMed  Google Scholar 

  • Gunawan B . (2008). Knock-in murine models of familial gastrointestinal stromal tumours. J Pathol 214: 407–409.

    Article  CAS  PubMed  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirashima K, Takamori H, Hirota M, Tanaka H, Ichihara A, Sakamoto Y et al. (2009). Multiple gastrointestinal stromal tumors in neurofibromatosis type 1: report of a case. Surg Today 39: 979–983.

    Article  PubMed  Google Scholar 

  • Huang B, Lei Z, Zhang GM, Li D, Song C, Li B et al. (2008). SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112: 1269–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Luca M, Gutman M, McConkey DJ, Langley KE, Lyman SD et al. (1996). Enforced c-KIT expression renders highly metastatic human melanoma cells susceptible to stem cell factor-induced apoptosis and inhibits their tumorigenic and metastatic potential. Oncogene 13: 2339–2347.

    CAS  PubMed  Google Scholar 

  • Hutt KJ, McLaughlin EA, Holland MK . (2006). Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod 12: 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Kanakura Y, Tamaki T, Kuriu A, Kitayama H, Ishikawa J et al. (1991). Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood 78: 2962–2968.

    CAS  PubMed  Google Scholar 

  • Ingram DA, Yang FC, Travers JB, Wenning MJ, Hiatt K, New S et al. (2000). Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191: 181–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T, Nakai N, Liu NN, Shiba K, Isozaki K, Matsuda I et al. (2009). in vivo effect of imatinib on progression of cecal GIST-like tumors in exon 17-type c-kit knock-in mice. Lab Invest 89: 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo MA, Van der Valk P, Van Ark-Otte J, Rubio G, Germa-Lluch JR, Ueda R et al. (1995). Differential expression of the c-kit proto-oncogene in germ cell tumours. J Pathol 177: 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J et al. (2010). Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177: 1031–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, Griffith D et al. (2004). KIT mutations are common in testicular seminomas. Am J Pathol 164: 305–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalaf WF, Yang FC, Chen S, White H, Bessler W, Ingram DA et al. (2007). K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/− mast cells. J Immunol 178: 2527–2534.

    Article  CAS  PubMed  Google Scholar 

  • Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM . (1998). Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 152: 1259–1269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinet JP . (2007). The essential role of mast cells in orchestrating inflammation. Immunol Rev 217: 5–7.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Go S, Hatanaka K . (1978). Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52: 447–452.

    CAS  PubMed  Google Scholar 

  • Ko CD, Kim JS, Ko BG, Son BH, Kang HJ, Yoon HS et al. (2003). The meaning of the c-kit proto-oncogene product in malignant transformation in human mammary epithelium. Clin Exp Metastasis 20: 593–597.

    Article  CAS  PubMed  Google Scholar 

  • Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD et al. (2010). Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70: 3526–3536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15: 2148–2157.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B et al. (2008). Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nat Med 14: 565–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krystal GW, Hines SJ, Organ CP . (1996). Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res 56: 370–376.

    CAS  PubMed  Google Scholar 

  • Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E et al. (2008). Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol 181: 6955–6963.

    Article  CAS  PubMed  Google Scholar 

  • Lassam N, Bickford S . (1992). Loss of c-kit expression in cultured melanoma cells. Oncogene 7: 51–56.

    CAS  PubMed  Google Scholar 

  • Laurson J, Selden C, Clements M, Mavri-Damelin D, Coward S, Lowdell M et al. (2007). Putative human liver progenitor cells in explanted liver. Cells Tissues Organs 186: 180–191.

    Article  CAS  PubMed  Google Scholar 

  • Leong KG, Wang BE, Johnson L, Gao WQ . (2008). Generation of a prostate from a single adult stem cell. Nature 456: 804–808.

    Article  CAS  PubMed  Google Scholar 

  • Liegl B, Kepten I, Le C, Zhu M, Demetri GD, Heinrich MC et al. (2008). Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 216: 64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liegl-Atzwanger B, Fletcher JA, Fletcher CD . (2010). Gastrointestinal stromal tumors. Virchows Arch 456: 111–127.

    Article  PubMed  Google Scholar 

  • Liu H, Chen X, Focia PJ, He X . (2007). Structural basis for stem cell factor-KIT signaling and activation of class III receptor tyrosine kinases. Embo J 26: 891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K et al. (2006). Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442: 997–1002.

    Article  CAS  PubMed  Google Scholar 

  • Lyon MF, Glenister PH . (1982). A new allele sash (Wsh) at the W-locus and a spontaneous recessive lethal in mice. Genet Res 39: 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K et al. (1992). Requirement of c-kit for development of intestinal pacemaker system. Development 116: 369–375.

    CAS  PubMed  Google Scholar 

  • Maeyama H, Hidaka E, Ota H, Minami S, Kajiyama M, Kuraishi A et al. (2001). Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 120: 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL . (2000). Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9: 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Maltby S, Khazaie K, McNagny KM . (2009). Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796: 19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F . (2008). Cancer-related inflammation. Nature 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Orozco N, Dong C . (2009). The IL-17/IL-23 axis of inflammation in cancer: friend or foe? Curr Opin Investig Drugs 10: 543–549.

    CAS  PubMed  Google Scholar 

  • Matsui Y, Zsebo KM, Hogan BL . (1990). Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature 347: 667–669.

    Article  CAS  PubMed  Google Scholar 

  • Meininger CJ, Yano H, Rottapel R, Bernstein A, Zsebo KM, Zetter BR . (1992). The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 79: 958–963.

    CAS  PubMed  Google Scholar 

  • Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP . (2007). Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67: 11438–11446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menard C, Blay JY, Borg C, Michiels S, Ghiringhelli F, Robert C et al. (2009). Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res 69: 3563–3569.

    Article  CAS  PubMed  Google Scholar 

  • Molin D, Edstrom A, Glimelius I, Glimelius B, Nilsson G, Sundstrom C et al. (2002). Mast cell infiltration correlates with poor prognosis in Hodgkin's lymphoma. Br J Haematol 119: 122–124.

    Article  PubMed  Google Scholar 

  • Moller C, Alfredsson J, Engstrom M, Wootz H, Xiang Z, Lennartsson J et al. (2005). Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood 106: 1330–1336.

    Article  PubMed  CAS  Google Scholar 

  • Morales JK, Falanga YT, Depcrynski A, Fernando J, Ryan JJ . (2010). Mast cell homeostasis and the JAK-STAT pathway. Genes Immun 11: 599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musch W, Wege AK, Mannel DN, Hehlgans T . (2008). Generation and characterization of alpha-chymase-Cre transgenic mice. Genesis 46: 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Nakai N, Ishikawa T, Nishitani A, Liu NN, Shincho M, Hao H et al. (2008). A mouse model of a human multiple GIST family with KIT-Asp820Tyr mutation generated by a knock-in strategy. J Pathol 214: 302–311.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Yao L, Tosato G . (2004). Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114: 1317–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natali PG, Nicotra MR, Sures I, Mottolese M, Botti C, Ullrich A . (1992). Breast cancer is associated with loss of the c-kit oncogene product. Int J Cancer 52: 713–717.

    Article  CAS  PubMed  Google Scholar 

  • Nigrovic PA, Gray DH, Jones T, Hallgren J, Kuo FC, Chaletzky B et al. (2008). Genetic inversion in mast cell-deficient (W(sh)) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. Am J Pathol 173: 1693–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A et al. (1989). Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice—evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3: 816–826.

    Article  CAS  PubMed  Google Scholar 

  • Nocka K, Tan JC, Chiu E, Chu TY, Ray P, Traktman P et al. (1990). Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. Embo J 9: 1805–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okayama Y, Kawakami T . (2006). Development, migration, and survival of mast cells. Immunol Res 34: 97–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr-Urtreger A, Avivi A, Zimmer Y, Givol D, Yarden Y, Lonai P . (1990). Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development 109: 911–923.

    CAS  PubMed  Google Scholar 

  • Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M et al. (2009). The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69: 2514–2522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmu S, Soderstrom KO, Quazi K, Isola J, Salminen E . (2002). Expression of C-KIT and HER-2 tyrosine kinase receptors in poor-prognosis breast cancer. Anticancer Res 22: 411–414.

    CAS  PubMed  Google Scholar 

  • Pan J, Quintas-Cardama A, Kantarjian HM, Akin C, Manshouri T, Lamb P et al. (2007). EXEL-0862, a novel tyrosine kinase inhibitor, induces apoptosis in vitro and ex vivo in human mast cells expressing the KIT D816V mutation. Blood 109: 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA et al. (2006). Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 24: 3904–3911.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, Orfao A, Flores T et al. (2002). Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 100: 1274–1286.

    CAS  PubMed  Google Scholar 

  • Piconese S, Gri G, Tripodo C, Musio S, Gorzanelli A, Frossi B et al. (2009). Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114: 2639–2648.

    Article  CAS  PubMed  Google Scholar 

  • Pierotti MA, Negri T, Tamborini E, Perrone F, Pricl S, Pilotti S . (2010). Targeted therapies: the rare cancer paradigm. Mol Oncol 4: 19–37.

    Article  CAS  PubMed  Google Scholar 

  • Robson ME, Glogowski E, Sommer G, Antonescu CR, Nafa K, Maki RG et al. (2004). Pleomorphic characteristics of a germ-line KIT mutation in a large kindred with gastrointestinal stromal tumors, hyperpigmentation, and dysphagia. Clin Cancer Res 10: 1250–1254.

    Article  CAS  PubMed  Google Scholar 

  • Ronnstrand L . (2004). Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci 61: 2535–2548.

    Article  CAS  PubMed  Google Scholar 

  • Rossi F, Ehlers I, Agosti V, Socci ND, Viale A, Sommer G et al. (2006). Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal stromal tumor. Proc Natl Acad Sci USA 103: 12843–12848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin BP, Antonescu CR, Scott-Browne JP, Comstock ML, Gu Y, Tanas MR et al. (2005). A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E. Cancer Res 65: 6631–6639.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai S, Hasegawa T, Sakuma Y, Takazawa Y, Motegi A, Nakajima T et al. (2004). Myxoid epithelioid gastrointestinal stromal tumor (GIST) with mast cell infiltrations: a subtype of GIST with mutations of platelet-derived growth factor receptor alpha gene. Hum Pathol 35: 1223–1230.

    Article  CAS  PubMed  Google Scholar 

  • Scholten J, Hartmann K, Gerbaulet A, Krieg T, Muller W, Testa G et al. (2008). Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res 17: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Seggewiss R, Lore K, Greiner E, Magnusson MK, Price DA, Douek DC et al. (2005). Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 105: 2473–2479.

    Article  CAS  PubMed  Google Scholar 

  • Shah NP, Lee FY, Luo R, Jiang Y, Donker M, Akin C . (2006). Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 108: 286–291.

    Article  CAS  PubMed  Google Scholar 

  • Silvers WK . (1979). The Coat Colors of Mice—A Model for Mammalian Gene Action and Interaction. Springer Verlag: Berlin, Germany.

    Book  Google Scholar 

  • Sommer G, Agosti V, Ehlers I, Rossi F, Corbacioglu S, Farkas J et al. (2003). Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA 100: 6706–6711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI . (2007). Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13: 1211–1218.

    Article  CAS  PubMed  Google Scholar 

  • Stanulla M, Welte K, Hadam MR, Pietsch T . (1995). Coexpression of stem cell factor and its receptor c-Kit in human malignant glioma cell lines. Acta Neuropathol 89: 158–165.

    Article  CAS  PubMed  Google Scholar 

  • Staser K, Yang FC, Clapp DW . (2010). Mast cells and the neurofibroma microenvironment. Blood 116: 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. (2008). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Fourth Edition. WHO Press: Geneva, Switzerland.

    Google Scholar 

  • Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M et al. (2006). A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12: 214–219.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Liang X, Zheng M, Zhu Z, Zhu G, Yang J et al. (2010). Expression of c-kit and Slug correlates with invasion and metastasis of salivary adenoid cystic carcinoma. Oral Oncol 46: 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Taskinen M, Karjalainen-Lindsberg ML, Leppa S . (2008). Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood 111: 4664–4667.

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Galli SJ, Coleman JW . (1995). Stem-cell factor, the kit ligand, induces direct degranulation of rat peritoneal mast cells in vitro and in vivo: dependence of the in vitro effect on period of culture and comparisons of stem-cell factor with other mast cell-activating agents. Immunology 86: 427–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teitell M, Rowland JM . (1998). Systemic mast cell disease associated with primary ovarian mixed malignant germ cell tumor. Hum Pathol 29: 1546–1547.

    Article  CAS  PubMed  Google Scholar 

  • Theoharides TC . (2008). Mast cells and pancreatic cancer. N Engl J Med 358: 1860–1861.

    Article  CAS  PubMed  Google Scholar 

  • Theoharides TC, Conti P . (2004). Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25: 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Tono T, Tsujimura T, Koshimizu U, Kasugai T, Adachi S, Isozaki K et al. (1992). c-kit Gene was not transcribed in cultured mast cells of mast cell-deficient Wsh/Wsh mice that have a normal number of erythrocytes and a normal c-kit coding region. Blood 80: 1448–1453.

    CAS  PubMed  Google Scholar 

  • Tournilhac O, Santos DD, Xu L, Kutok J, Tai YT, Le Gouill S et al. (2006). Mast cells in Waldenstrom's macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol 17: 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  • Tripodo C, Gri G, Piccaluga PP, Frossi B, Guarnotta C, Piconese S et al. (2010). Mast Cells and Th17 Cells Contribute to the Lymphoma-Associated Pro-Inflammatory Microenvironment of Angioimmunoblastic T-Cell Lymphoma. Am J Pathol 177: 792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda H, Tani Y, Weisenberger J, Kitada S, Hasegawa T, Murata T et al. (2005). Frequent KIT and epidermal growth factor receptor overexpressions in undifferentiated-type breast carcinomas with ‘stem-cell-like’ features. Cancer Sci 96: 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ . (2009). Mast cells as regulators of adaptive immunity to tumours. Clin Exp Immunol 155: 140–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein IB, Joe A . (2008). Oncogene addiction. Cancer Res 68: 3077–3080.

    Article  CAS  PubMed  Google Scholar 

  • Westphal E . (1891). Uber mastzellen. In: Ehrlich P (ed). Ferbenanlytische Untersuchungen Zur Histologie Und Klinik Des Blutes. Hirschwald: Berlin, pp 17–41.

    Google Scholar 

  • Winship I, Young K, Martell R, Ramesar R, Curtis D, Beighton P . (1991). Piebaldism: an autonomous autosomal dominant entity. Clin Genet 39: 330–337.

    Article  CAS  PubMed  Google Scholar 

  • Woodman SE, Davies MA . (2010). Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol 80: 568–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang FC, Ingram DA, Chen S, Hingtgen CM, Ratner N, Monk KR et al. (2003). Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/− mast cells. J Clin Invest 112: 1851–1861.

    Article  CAS  PubMed  Google Scholar 

  • Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X et al. (2008). Nf1-dependent tumors require a microenvironment containing Nf1+/− and c-kit-dependent bone marrow. Cell 135: 437–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang FC, Kapur R, King AJ, Tao W, Kim C, Borneo J et al. (2000). Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 12: 557–568.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX et al. (2010). Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS One 5: e8922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yared MA, Middleton LP, Meric F, Cristofanilli M, Sahin AA . (2004). Expression of c-kit proto-oncogene product in breast tissue. Breast J 10: 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Young SM, Cambareri AC, Odell A, Geary SM, Ashman LK . (2007). Early myeloid cells expressing c-KIT isoforms differ in signal transduction, survival and chemotactic responses to Stem Cell Factor. Cell Signal 19: 2572–2581.

    Article  CAS  PubMed  Google Scholar 

  • Zappulla JP, Dubreuil P, Desbois S, Letard S, Hamouda NB, Daeron M et al. (2005). Mastocytosis in mice expressing human Kit receptor with the activating Asp816Val mutation. J Exp Med 202: 1635–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaruba MM, Soonpaa M, Reuter S, Field LJ . (2010). Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation 121: 1992–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF . (2002). Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296: 920–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL et al. (1990). Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63: 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Zudaire E, Martinez A, Garayoa M, Pio R, Kaur G, Woolhiser MR et al. (2006). Adrenomedullin is a cross-talk molecule that regulates tumor and mast cell function during human carcinogenesis. Am J Pathol 168: 280–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Ministry of Health and Associazione Italiana Ricerca sul Cancro (to MPC). SP is supported by My First AIRC grant (8726). PP is supported by a fellowship from FIRC (Fondazione Italiana Ricerca sul Cancro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M P Colombo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pittoni, P., Piconese, S., Tripodo, C. et al. Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 30, 757–769 (2011). https://doi.org/10.1038/onc.2010.494

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.494

Keywords

This article is cited by

Search

Quick links