Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cross talk between stimulated NF-κB and the tumor suppressor p53

Abstract

Nuclear factor-κB (NF-κB) and p53 critically determine cancer development and progression. Defining the cross talk between these transcription factors can expand our knowledge on molecular mechanisms of tumorigenesis. Here, we show that induction of replicational stress activates NF-κB p65 and triggers its interaction with p53 in the nucleus. Experiments with knockout cells show that p65 and p53 are both required for enhanced NF-κB activity during S-phase checkpoint activation involving ataxia-telangiectasia mutated and checkpoint kinase-1. Accordingly, the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) also triggers formation of a transcriptionally active complex containing nuclear p65 and p53 on κB response elements. Gene expression analyses revealed that, independent of NF-κB activation in the cytosol, TNF-induced NF-κB-directed gene expression relies on p53. Hence, p53 is unexpectedly necessary for NF-κB-mediated gene expression induced by atypical and classical stimuli. Remarkably, data from gain- and loss-of function approaches argue that anti-apoptotic NF-κB p65 activity is constitutively evoked by a p53 hot-spot mutant frequently found in tumors. Our observations suggest explanations for the outstanding question why p53 mutations rather than p53 deletions arise in tumors of various origins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alsafadi S, Tourpin S, Andre F, Vassal G, Ahomadegbe JC . (2009). P53 family: at the crossroads in cancer therapy. Curr Med Chem 16: 4328–4344.

    Article  CAS  PubMed  Google Scholar 

  • Ansari SA, Safak M, Del Valle L, Enam S, Amini S, Khalili K . (2001). Cell cycle regulation of NF-kappa b-binding activity in cells from human glioblastomas. Exp Cell Res 265: 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR . (1995). High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5: 931–936.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong MB, Bian X, Liu Y, Subramanian C, Ratanaproeksa AB, Shao F et al. (2006). Signaling from p53 to NF-kappaB determines the chemotherapy responsiveness of neuroblastoma. Neoplasia 8: 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Bar J, Feniger-Barish R, Lukashchuk N, Shaham H, Moskovits N, Goldfinger N et al. (2009). Cancer cells suppress p53 in adjacent fibroblasts. Oncogene 28: 933–936.

    Article  CAS  PubMed  Google Scholar 

  • Bohuslav J, Chen LF, Kwon H, Mu Y, Greene WC . (2004). p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem 279: 26115–26125.

    Article  CAS  PubMed  Google Scholar 

  • Bug G, Ritter M, Wassmann B, Schoch C, Heinzel T, Schwarz K et al. (2005). Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer 104: 2717–2725.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Deppert W . (2007). Mutant p53: from guardian to fallen angel? Oncogene 26: 2142–2144.

    Article  CAS  PubMed  Google Scholar 

  • Dornan D, Shimizu H, Mah A, Dudhela T, Eby M, O'Rourke K et al. (2006). ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science 313: 1122–1126.

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Serrano M, Blasco MA . (2007). The common biology of cancer and ageing. Nature 448: 767–774.

    Article  CAS  PubMed  Google Scholar 

  • Fritsche P, Seidler B, Schuler S, Schnieke A, Göttlicher M, Schmid RM et al. (2009). HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA. Gut 58: 1399–1409.

    Article  CAS  PubMed  Google Scholar 

  • Gapuzan ME, Schmah O, Pollock AD, Hoffmann A, Gilmore TD . (2005). Immortalized fibroblasts from NF-kappaB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor alpha after transformation by v-Ras. Oncogene 24: 6574–6583.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD, Herscovitch M . (2006). Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 25: 6887–6899.

    Article  CAS  PubMed  Google Scholar 

  • Gottifredi V, Shieh S, Taya Y, Prives C . (2001). p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc Natl Acad Sci USA 98: 1036–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grallert B, Boye E . (2008). The multiple facets of the intra-S checkpoint. Cell Cycle 7: 2315–2320.

    Article  CAS  PubMed  Google Scholar 

  • Ha J, Choi HS, Lee Y, Lee ZH, Kim HH . (2009). Caffeic acid phenethyl ester inhibits osteoclastogenesis by suppressing NF kappaB and downregulating NFATc1 and c-Fos. Int Immunopharmacol 9: 774–780.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Ishida Y, Kimura A, Iwakura Y, Mukaida N, Kondo T . (2007). IFN-gamma protects cerulein-induced acute pancreatitis by repressing NF-kappa B activation. J Immunol 178: 7385–7394.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7: 469–483.

    Article  CAS  PubMed  Google Scholar 

  • Ho CC, Siu WY, Lau A, Chan WM, Arooz T, Poon RY . (2006). Stalled replication induces p53 accumulation through distinct mechanisms from DNA damage checkpoint pathways. Cancer Res 66: 2233–2241.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M . (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277: 3247–3257.

    Article  CAS  PubMed  Google Scholar 

  • Huang WC, Ju TK, Hung MC, Chen CC . (2007). Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell 26: 75–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung MW, Shiao MS, Tsai LC, Chang GG, Chang TC . (2003). Apoptotic effect of caffeic acid phenethyl ester and its ester and amide analogues in human cervical cancer ME180 cells. Anticancer Res 23: 4773–4780.

    CAS  PubMed  Google Scholar 

  • Janssens S, Tschopp J . (2006). Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ 13: 773–784.

    Article  CAS  PubMed  Google Scholar 

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . (2001). Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Karin M . (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    Article  CAS  PubMed  Google Scholar 

  • Karl S, Pritschow Y, Volcic M, Hacker S, Baumann B, Wiesmuller L et al. (2009). Identificationof a novel pro-apopotic function of NF-kappaB in the DNA damage response. J Cell Mol Med (in press; doi:10.1111/j.1582-4934.2009.00888.x).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashatus D, Cogswell P, Baldwin AS . (2006). Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev 20: 225–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaustov L, Yi GS, Ayed A, Bochkareva E, Bochkarev A, Arrowsmith CH . (2006). p53 transcriptional activation domain: a molecular chameleon? Cell Cycle 5: 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N . (2008a). Activated p53 induces NF-kappaB DNA binding but suppresses its transcriptional activation. Biochem Biophys Res Commun 372: 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N . (2008b). p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10: 611–618.

    Article  CAS  PubMed  Google Scholar 

  • Knauer SK, Krämer OH, Knosel T, Engels K, Rodel F, Kovacs AF et al. (2007). Nuclear export is essential for the tumor-promoting activity of survivin. FASEB J 21: 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Krämer OH . (2009). HDAC2: a critical factor in health and disease. Trends Pharmacol Sci 30: 647–655.

    Article  PubMed  Google Scholar 

  • Krämer OH, Baus D, Knauer SK, Stein S, Jager E, Stauber RH et al. (2006). Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 20: 473–485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krämer OH, Knauer SK, Zimmermann D, Stauber RH, Heinzel T . (2008). Histone deacetylase inhibitors and hydroxyurea modulate the cell cycle and cooperatively induce apoptosis. Oncogene 27: 732–740.

    Article  PubMed  Google Scholar 

  • Krämer OH, Knauer SK, Greiner G, Jandt E, Reichardt S, Gührs KH et al. (2009). A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 23: 223–235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Kuo HC, Chu CY, Wang CJ, Lin WC, Tseng TH . (2003). Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochem Pharmacol 66: 2281–2289.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ . (2009). The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384: 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sejas DP, Zhang X, Qiu Y, Nattamai KJ, Rani R et al. (2007). TNF-alpha induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J Clin Invest 117: 3283–3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Ruley HE . (1993). Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Marusyk A, DeGregori J . (2007). Replicational stress selects for p53 mutation. Cell Cycle 6: 2148–2151.

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Wolff S, Speidel D, Deppert W . (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17: 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Singh S, Burke Jr TR., Grunberger D, Aggarwal BB . (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93: 9090–9095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak BK, Das GM . (2002). Stabilization of p53 and transactivation of its target genes in response to replication blockade. Oncogene 21: 7226–7229.

    Article  CAS  PubMed  Google Scholar 

  • Nesic D, Grumont R, Gerondakis S . (2008). The nuclear factor-kappaB and p53 pathways function independently in primary cells and transformed fibroblasts responding to genotoxic damage. Mol Cancer Res 6: 1193–1203.

    Article  CAS  PubMed  Google Scholar 

  • O'Brien DI, Nally K, Kelly RG, O'Connor TM, Shanahan F, O'Connell J . (2005). Targeting the Fas/Fas ligand pathway in cancer. Expert Opin Ther Targets 9: 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  • Perkins ND . (2007). Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8: 49–62.

    Article  CAS  PubMed  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Ravi R, Mookerjee B, van Hensbergen Y, Bedi GC, Giordano A, El-Deiry WS et al. (1998). p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res 58: 4531–4536.

    CAS  PubMed  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB . (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11: 175–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner F, Schmitz ML . (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends Biochem Sci 34: 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Royds JA, Dower SK, Qwarnstrom EE, Lewis CE . (1998). Response of tumour cells to hypoxia: role of p53 and NFkB. Mol Pathol 51: 55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan KM, Ernst MK, Rice NR, Vousden KH . (2000). Role of NF-kappaB in p53-mediated programmed cell death. Nature 404: 892–897.

    Article  CAS  PubMed  Google Scholar 

  • Schäfer T, Scheuer C, Roemer K, Menger MD, Vollmar B . (2003). Inhibition of p53 protects liver tissue against endotoxin-induced apoptotic and necrotic cell death. FASEB J 17: 660–667.

    Article  PubMed  Google Scholar 

  • Scheidereit C . (2006). IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25: 6685–6705.

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Saur D, Siveke JT, Fritsch R, Greten FR, Schmid RM . (2006). IKKalpha controls p52/RelB at the skp2 gene promoter to regulate G1- to S-phase progression. EMBO J 25: 3801–3812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrell UM, Rittig MG, Koch U, Marschalek R, Anders M . (1996). Hydroxyurea for treatment of unresectable meningiomas. Lancet 348: 888–889.

    Article  CAS  PubMed  Google Scholar 

  • Schumm K, Rocha S, Caamano J, Perkins ND . (2006). Regulation of p53 tumour suppressor target gene expression by the p52 NF-kappaB subunit. EMBO J 25: 4820–4832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF et al. (2005). Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25: 10097–10110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidler B, Schmidt A, Mayr U, Nakhai H, Schmid RM, Schneider G et al. (2008). A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc Natl Acad Sci USA 105: 10137–10142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soussi T, Wiman KG . (2007). Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12: 303–312.

    Article  CAS  PubMed  Google Scholar 

  • Spange S, Wagner T, Heinzel T, Krämer OH . (2009). Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41: 185–198.

    Article  CAS  PubMed  Google Scholar 

  • Szoltysek K, Pietranek K, Kalinowska-Herok M, Pietrowska M, Kimmel M, Widlak P . (2008). TNFalpha-induced activation of NFkappaB protects against UV-induced apoptosis specifically in p53-proficient cells. Acta Biochim Pol 55: 741–748.

    CAS  PubMed  Google Scholar 

  • Tergaonkar V . (2006). NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 38: 1647–1653.

    Article  CAS  PubMed  Google Scholar 

  • Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I . (2002). p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell 1: 493–503.

    Article  CAS  PubMed  Google Scholar 

  • Tsai CJ, Ma B, Nussinov R . (2009). Protein-protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 34: 594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al. (2009). Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457: 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Wadgaonkar R, Phelps KM, Haque Z, Williams AJ, Silverman ES, Collins T . (1999). CREB-binding protein is a nuclear integrator of nuclear factor-kappaB and p53 signaling. J Biol Chem 274: 1879–1882.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, El-Deiry WS . (2008). Restoration of p53 to limit tumor growth. Curr Opin Oncol 20: 90–96.

    Article  PubMed  Google Scholar 

  • Webster GA, Perkins ND . (1999). Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 19: 3485–3495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R et al. (2007). Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67: 2396–2401.

    Article  CAS  PubMed  Google Scholar 

  • Wietek C, O′Neill LA . (2007). Diversity and regulation in the NF-kappaB system. Trends Biochem Sci 32: 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Lozano G . (1994). NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem 269: 20067–20074.

    CAS  PubMed  Google Scholar 

  • Wu ZH, Miyamoto S . (2008). Induction of a pro-apoptotic ATM-NF-kappaB pathway and its repression by ATR in response to replication stress. EMBO J 27: 1963–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan B, Wang H, Rabbani ZN, Zhao Y, Li W, Yuan Y et al. (2006). Tumor necrosis factor-alpha is a potent endogenous mutagen that promotes cellular transformation. Cancer Res 66: 11565–11570.

    Article  CAS  PubMed  Google Scholar 

  • Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M et al. (2009). Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460: 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz ZB, Weih DS, Sivakumar V, Weih F . (2003). RelB is required for Peyer's patch development: differential regulation of p52-RelB by lymphotoxin and TNF. EMBO J 22: 121–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Ozaki T, Furuya K, Nakanishi M, Kikuchi H, Yamamoto H et al. (2008). ATM-dependent nuclear accumulation of IKK-alpha plays an important role in the regulation of p73-mediated apoptosis in response to cisplatin. Oncogene 27: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XP, Liu F, Cheng Z, Wang W . (2009). Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci USA 106: 12245–12250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr B Vogelstein for HCT-116 cells, Dr A Hoffmann for wild-type and Rel A−/− MEFs, Dr T Jacks and Dr D Tuveson for LSL-KRASG12D and LSL-p53R172H mice, Dr A Berns for TP53lox/lox mice, Dr H Nakhai for Ptf1a/p48ex1Cre/+ mice, Dr R Bernards and Dr R Agami for shRNA against p53, M Buchwald for help with electroporation, Dr A Licht for help with EMSAs, Dr Z-Q Wang and Dr W-K Min for wild-type and p53−/− MEFs and very helpful discussions and suggestions. This study was supported by DFG (SCHN 959/1-2) and SFB456 grants to GS, Landesprogramm ‘ProExzellenz’ (PE 123-2-1) to OHK, and a grant from Deutsche Krebshilfe to GS and OHK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O H Krämer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, G., Henrich, A., Greiner, G. et al. Cross talk between stimulated NF-κB and the tumor suppressor p53. Oncogene 29, 2795–2806 (2010). https://doi.org/10.1038/onc.2010.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.46

Keywords

This article is cited by

Search

Quick links