Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rictor is a novel target of p70 S6 kinase-1

Abstract

The rapamycin-insensitive companion of mammalian target of rapamycin (mTOR) (Rictor) is a key member of mTOR complex-2 (mTORC2), which phosphorylates the AGC kinases Akt/PKB, PKC and SGK1 at a C-terminal hydrophobic motif. We identified several novel sites on Rictor that are phosphorylated, including Thr1135, which is conserved across all vertebrates. Phosphorylation of this site on Rictor is stimulated by amino acids and growth factors through a rapamycin-sensitive signaling cascade. We demonstrate here that Rictor is a direct target of the ribosomal protein S6 kinase-1 (S6K1). Rictor phosphorylation at Thr1135 does not lead to major changes in mTORC2-kinase activity. However, phosphorylation of this site turns over rapidly and mediates 14-3-3 binding to Rictor and mTORC2, providing possibility for altered interactions of the complex. These findings reveal an unexpected signaling input into mTORC2, which is regulated by amino acids, growth factors and rapamycin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Akcakanat A, Singh G, Hung MC, Meric-Bernstam F . (2007). Rapamycin regulates the phosphorylation of rictor. Biochem Biophys Res Commun 362: 330–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P . (1996). Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 399: 333–338.

    CAS  PubMed  Google Scholar 

  • Aronova S, Wedaman K, Aronov PA, Fontes K, Ramos K, Hammock BD et al. (2008). Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab 7: 148–158.

    Article  CAS  PubMed  Google Scholar 

  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J et al. (2004). Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101: 12130–12135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F et al. (2008). Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8: 411–424.

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar PT, Hay N . (2007). The two TORCs and Akt. Dev Cell 12: 487–502.

    Article  CAS  PubMed  Google Scholar 

  • Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD et al. (2008). Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7: 1346–1351.

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Jin WH, Sheng QH, Shieh CH, Wu JR, Zeng R . (2007). Protein phosphorylation and expression profiling by Yin-Yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry. J Proteome Res 6: 250–262.

    Article  CAS  PubMed  Google Scholar 

  • Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R et al. (2008). Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31: 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ et al. (2008). A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105: 10762–10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C et al. (2008). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27: 1932–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA et al. (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16: 1865–1870.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez JM, Alessi DR . (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416: 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH et al. (2009). mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15: 148–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11: 859–871.

    Article  CAS  PubMed  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30: 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177–189.

    Article  CAS  PubMed  Google Scholar 

  • Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. (2004). The TSC1-2 tumor suppressor controls insulin-PI3 K signaling via regulation of IRS proteins. J Cell Biol 166: 213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermeking H . (2003). The 14-3-3 cancer connection. Nat Rev Cancer 3: 931–943.

    Article  CAS  PubMed  Google Scholar 

  • Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL . (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27: 1919–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL . (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Ouyang H, Li Y, Guan KL . (2005). Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 69: 79–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al. (2006). SIN1/MIP1 maintains rictor–mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125–137.

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  • Jones KT, Greer ER, Pearce D, Ashrafi K . (2009). Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biol 7: e60.

    PubMed  Google Scholar 

  • Kamada Y, Fujioka Y, Suzuki NN, Inagaki F, Wullschleger S, Loewith R et al. (2005). Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25: 7239–7248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H et al. (2003). GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11: 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Harris TE, Keller SR, Choi KM, Magnuson MA, Lawrence Jr JC . (2008). Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity. Mol Cell Biol 28: 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457–468.

    Article  CAS  PubMed  Google Scholar 

  • Ma XM, Blenis J . (2009). Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10: 307–318.

    Article  PubMed  Google Scholar 

  • Manning BD . (2004). Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167: 399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Obenauer JC, Cantley LC, Yaffe MB . (2003). Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31: 3635–3641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M et al. (2007). Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405: 513–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y et al. (2000). Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408: 994–997.

    Article  CAS  PubMed  Google Scholar 

  • Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J et al. (2004). S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24: 3112–3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137: 873–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radimerski T, Montagne J, Hemmings-Mieszczak M, Thomas G . (2002). Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6 K signaling. Genes Dev 16: 2627–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson CJ, Broenstrup M, Fingar DC, Julich K, Ballif BA, Gygi S et al. (2004). SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 14: 1540–1549.

    Article  CAS  PubMed  Google Scholar 

  • Ruvinsky I, Meyuhas O . (2006). Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31: 342–348.

    Article  CAS  PubMed  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25: 903–915.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22: 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  • Schalm SS, Blenis J . (2002). Identification of a conserved motif required for mTOR signaling. Curr Biol 12: 632–639.

    Article  CAS  PubMed  Google Scholar 

  • Shah OJ, Wang Z, Hunter T . (2004). Inappropriate activation of the TSC/Rheb/mTOR/S6 K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14: 1650–1656.

    Article  CAS  PubMed  Google Scholar 

  • Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC . (1998). Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17: 6649–6659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA . (2006). Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 11: 583–589.

    Article  CAS  PubMed  Google Scholar 

  • Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G . (2009). Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 23: 496–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431: 200–205.

    Article  CAS  PubMed  Google Scholar 

  • Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yue P, Kim YA, Fu H, Khuri FR, Sun SY . (2008). Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. Cancer Res 68: 7409–7418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN . (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H et al. (1997). The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91: 961–971.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Inoki K, Ikenoue T, Guan KL . (2006). Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20: 2820–2832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanivan S, Gnad F, Wickstrom SA, Geiger T, Macek B, Cox J et al. (2008). Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7: 5314–5326.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al. (2003). Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112: 1223–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Julie Bastien, Megan Cully, David Hancock and Oliver Pardo for helpful discussions and technical advice. This work was funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Downward.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treins, C., Warne, P., Magnuson, M. et al. Rictor is a novel target of p70 S6 kinase-1. Oncogene 29, 1003–1016 (2010). https://doi.org/10.1038/onc.2009.401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.401

Keywords

This article is cited by

Search

Quick links