Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Kit mutants require hypoxia-inducible factor 1α to transform melanocytes

Abstract

Many studies have highlighted the critical role of c-Kit in normal melanocyte development but its role in melanoma development remains unclear. Although c-Kit expression is often lost during melanoma progression, a subset of melanoma has been found to overexpress c-Kit and mutations activating c-Kit have recently been identified in some acral and mucosal melanoma. To address the role of these c-Kit mutants in the transformation of melanocytes, we characterized the physiological responses of melanocytes expressing the most frequent c-Kit mutants found in melanoma (K642E and L576P) and a novel mutant we identified in an acral melanoma. We analysed signaling pathways activated downstream of c-Kit and showed that all three mutants led to a strong activation of the phosphatidyl-inositol-3 kinase (PI3K) pathway but only weak activation of the Ras/Raf/Mek/Erk pathway, which was not sufficient to promote uncontrolled melanocyte proliferation and transformation. However, in hypoxic conditions or coexpressed with a constitutively active form of hypoxia-inducible factor 1α (HIF-1α), c-Kit mutants activate the Ras/Raf/Mek/Erk pathway, stimulate proliferation and transform melanocytes. Proliferation of melanocytes transformed by these mutants was specifically inhibited by imatinib. These results show for the first time that melanocytes require a specific epigenetic environment to be transformed by c-Kit mutants and highlight a distinct molecular mechanism of melanocyte transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alexeev V, Yoon K . (2006). Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol 126: 1102–1110.

    Article  CAS  Google Scholar 

  • Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J et al. (2008). KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 14: 6821–6828.

    Article  CAS  Google Scholar 

  • Bedogni B, Welford SM, Cassarino DS, Nickoloff BJ, Giaccia AJ, Powell MB . (2005). The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 8: 443–454.

    Article  CAS  Google Scholar 

  • Bennett DC, Cooper PJ, Hart IR . (1987). A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer 39: 414–418.

    Article  CAS  Google Scholar 

  • Busca R, Berra E, Gaggioli C, Khaled M, Bille K, Marchetti B et al. (2005). Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanom. J Cell Biol 170: 49–59.

    Article  CAS  Google Scholar 

  • Curtin JA, Busam K, Pinkel D, Bastian BC . (2006). Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24: 4340–4346.

    Article  CAS  Google Scholar 

  • da Rocha Dias S, Friedlos F, Light Y, Springer C, Workman P, Marais R . (2005). Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 65: 10686–10691.

    Article  CAS  Google Scholar 

  • Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66: 9483–9491.

    Article  CAS  Google Scholar 

  • Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436: 117–122.

    Article  CAS  Google Scholar 

  • Geissler EN, Ryan MA, Housman DE . (1988). The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55: 185–192.

    Article  CAS  Google Scholar 

  • Giebel LB, Spritz RA . (1991). Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism. Proc Natl Acad Sci USA 88: 8696–8699.

    Article  CAS  Google Scholar 

  • Gray-Schopfer V, Wellbrock C, Marais R . (2007). Melanoma biology and new targeted therapy. Nature 445: 851–857.

    Article  CAS  Google Scholar 

  • Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Kruse A et al. (2008). Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26: 2046–2051.

    Article  CAS  Google Scholar 

  • Huang LE, Willmore WG, Gu J, Goldberg MA, Bunn HF . (1999). Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J Biol Chem 274: 9038–9044.

    Article  CAS  Google Scholar 

  • Jiang X, Zhou J, Yuen NK, Corless CL, Heinrich MC, Fletcher JA et al. (2008). Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res 14: 7726–7732.

    Article  CAS  Google Scholar 

  • Lassam N, Bickford S . (1992). Loss of c-kit expression in cultured melanoma cells. Oncogene 7: 51–56.

    CAS  PubMed  Google Scholar 

  • Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R . (2005). Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells 23: 16–43.

    Article  CAS  Google Scholar 

  • Lutzky J, Bauer J, Bastian BC . (2008). Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 21: 492–493.

    Article  Google Scholar 

  • Muchemwa FC, Ma D, Inoue Y, Curtin JA, Bastian BC, Ihn H et al. (2008). Constitutive activation of the phosphatidyl inositol 3 kinase signalling pathway in acral lentiginous melanoma. Br J Dermatol 158: 411–413.

    CAS  PubMed  Google Scholar 

  • Natali PG, Nicotra MR, Sures I, Santoro E, Bigotti A, Ullrich A . (1992). Expression of c-kit receptor in normal and transformed human nonlymphoid tissues. Cancer Res 52: 6139–6143.

    CAS  PubMed  Google Scholar 

  • Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB et al. (2009). (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 106: 4519–4524.

    Article  CAS  Google Scholar 

  • Roskoski Jr R . (2005). Structure and regulation of Kit protein-tyrosine kinase—the stem cell factor receptor. Biochem Biophys Res Commun 338: 1307–1315.

    Article  CAS  Google Scholar 

  • Serve H, Yee NS, Stella G, Sepp-Lorenzino L, Tan JC, Besmer P . (1995). Differential roles of PI3-kinase and Kit tyrosine 821 in Kit receptor-mediated proliferation, survival and cell adhesion in mast cells. EMBO J 14: 473–483.

    Article  CAS  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature 439: 358–362.

    Article  CAS  Google Scholar 

  • Voytyuk O, Lennartsson J, Mogi A, Caruana G, Courtneidge S, Ashman LK et al. (2003). Src family kinases are involved in the differential signaling from two splice forms of c-Kit. J Biol Chem 278: 9159–9166.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Richard Marais for 501mel cells and pMCEF vector, Dr Lars Rönnstrand for a wild-type c-Kit expression vector and Dr Frank Bunn for the vector expressing HIF-1α (401Δ603). This work was funded by INSERM, Université Paris XII, Société Française de Dermatologie, Ligue Contre le Cancer (Comité du Val de Marne) and Institut National du Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Dumaz.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monsel, G., Ortonne, N., Bagot, M. et al. c-Kit mutants require hypoxia-inducible factor 1α to transform melanocytes. Oncogene 29, 227–236 (2010). https://doi.org/10.1038/onc.2009.320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.320

Keywords

This article is cited by

Search

Quick links