Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RB has a critical role in mediating the in vivo checkpoint response, mitigating secondary DNA damage and suppressing liver tumorigenesis initiated by aflatoxin B1

Abstract

Hepatocellular carcinoma (HCC) is a significant worldwide health concern that is associated with discrete etiological events, encompassing viral infection, metabolic stress and genotoxic compounds. In particular, exposure to the genotoxic hepatocarcinogen aflatoxin B1 (AFB1) is a significant factor in the genesis of human liver cancer. Presumably, genetic events associated with HCC could influence the effect of environmental insults, yielding a predilection for tumor development. The retinoblastoma (RB) tumor suppressor pathway is functionally inactivated in HCC through discrete mechanisms; however, the role of RB in suppressing tumorigenesis in this disease is poorly understood. Therefore, we analysed how RB status affects the response to AFB1 in reference to acute exposures and tumor development reflective of chronic exposure. Liver-specific Rb deletion resulted in an aberrant proliferative response to AFB1. This cell-cycle induction was associated with increased levels of secondary genetic damage and failure in appropriate cell-cycle coupling. This effect of RB loss was unique to AFB1 and involved the induction of a non-canonical proliferative pathway, and was not merely reflective of the overall cell-cycle deregulation or aberrant regenerative responses. The acute responses to AFB1 exposure presaged aberrations in hepatocyte nuclear morphology and ploidy with RB loss. Correspondingly, RB-deficient livers showed significantly enhanced susceptibility to liver tumorigenesis initiated by AFB1. Combined, these studies show that RB has a critical role in mediating checkpoint responses in liver tissue to maintain genome integrity and in suppressing tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Azechi H, Nishida N, Fukuda Y, Nishimura T, Minata M, Katsuma H et al. (2001). Disruption of the p16/cyclin D1/retinoblastoma protein pathway in the majority of human hepatocellular carcinomas. Oncology 60: 346–354.

    Article  CAS  Google Scholar 

  • Bioulac-Sage P, Laurent-Puig P, Balabaud C, Zucman-Rossi J . (2003). Genetic alterations in hepatocellular adenomas. Hepatology 37: 480, author reply 480-1.

    Article  Google Scholar 

  • Burkhart DL, Sage J . (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8: 671–682.

    Article  CAS  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    Article  CAS  Google Scholar 

  • DeGregori J, Johnson DG . (2006). Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 6: 739–748.

    CAS  Google Scholar 

  • Donehower LA . (1997). Genetic instability in animal tumorigenesis models. Cancer Surv 29: 329–352.

    CAS  PubMed  Google Scholar 

  • Edamoto Y, Hara A, Biernat W, Terracciano L, Cathomas G, Riehle HM et al. (2003). Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer 106: 334–341.

    Article  CAS  Google Scholar 

  • Farazi PA, DePinho RA . (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6: 674–687.

    Article  CAS  Google Scholar 

  • Fujimoto Y, Hampton LL, Wirth PJ, Wang NJ, Xie JP, Thorgeirsson SS . (1994). Alterations of tumor suppressor genes and allelic losses in human hepatocellular carcinomas in China. Cancer Res 54: 281–285.

    CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . (2007). Cancer statistics, 2007. CA Cancer J Clin 57: 43–66.

    Article  Google Scholar 

  • Knudsen KE, Booth D, Naderi S, Sever-Chroneos Z, Fribourg AF, Hunton IC et al. (2000). RB-dependent S-phase response to DNA damage. Mol Cell Biol 20: 7751–7763.

    Article  CAS  Google Scholar 

  • Knudsen ES, Knudsen KE . (2006). Retinoblastoma tumor suppressor: where cancer meets the cell cycle. Exp Biol Med (Maywood) 231: 1271–1281.

    Article  Google Scholar 

  • Knudsen ES, Knudsen KE . (2008). Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8: 714–724.

    Article  CAS  Google Scholar 

  • Knudsen ES, Sexton CR, Mayhew CN . (2006). Role of the retinoblastoma tumor suppressor in the maintenance of genome integrity. Curr Mol Med 6: 749–757.

    CAS  PubMed  Google Scholar 

  • Laurent-Puig P, Zucman-Rossi J . (2006). Genetics of hepatocellular tumors. Oncogene 25: 3778–3786.

    Article  CAS  Google Scholar 

  • Lazareva MN . (1981). Alpha-fetoprotein production by the synchronized regenerating murine liver. Its independence on the phases of the mitotic cycle. Oncodev Biol Med 2: 89–99.

    CAS  PubMed  Google Scholar 

  • Markey MP, Bergseid J, Bosco EE, Stengel K, Xu H, Mayhew CN et al. (2007). Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 26: 6307–6318.

    Article  CAS  Google Scholar 

  • Mayhew CN, Bosco EE, Fox SR, Okaya T, Tarapore P, Schwemberger SJ et al. (2005). Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res 65: 4568–4577.

    Article  CAS  Google Scholar 

  • Mayhew CN, Carter SL, Fox SR, Sexton CR, Reed CA, Srinivasan SV . et al. (2007). RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology 133: 976–984.

    Article  CAS  Google Scholar 

  • McGivern DR, Lemon SM . (2008). Tumor suppressors, chromosomal instability, and hepatitis C virus-associated liver cancer. Annu Rev Pathol 4: 399–415.

    Article  Google Scholar 

  • Munakata T, Nakamura M, Liang Y, Li K, Lemon SM . (2005). Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 102: 18159–18164.

    Article  CAS  Google Scholar 

  • Munakata T, Liang Y, Kim S, McGivern DR, Huibregtse J, Nomoto A et al. (2007). Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein. PLoS Pathog 3: 1335–1347.

    Article  CAS  Google Scholar 

  • Skawran B, Steinemann D, Becker T, Buurman R, Flik J, Wiese B et al. (2008). Loss of 13q is associated with genes involved in cell cycle and proliferation in dedifferentiated hepatocellular carcinoma. Mod Pathol 21: 1479–1489.

    Article  CAS  Google Scholar 

  • Stevens C, La Thangue NB . (2003). A new role for E2F-1 in checkpoint control. Cell Cycle 5: 435–437.

    Google Scholar 

  • Thorgeirsson SS, Grisham JW . (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31: 339–346.

    Article  CAS  Google Scholar 

  • Wikenheiser-Brokamp KA . (2006). Retinoblastoma family proteins: insights gained through genetic manipulation of mice. Cell Mol Life Sci 63: 767–780.

    Article  CAS  Google Scholar 

  • Yang X, Tang J, Rogler CE, Stanley P . (2003). Reduced hepatocyte proliferation is the basis of retarded liver tumor progression and liver regeneration in the lacking N-acetylglucosaminyltransferase III. Cancer Res 63: 7753–7759.

    CAS  PubMed  Google Scholar 

  • Yu MC, Yuan JM . (2004). Environmental factors and risk for hepatocellular carcinoma. Gastroenterology 127: S72–S78.

    Article  CAS  Google Scholar 

  • Zhang YJ, Jiang W, Chen CJ, Lee CS, Kahn SM, Santella RM et al. (1993). Amplification and overexpression of cyclin D1 in human hepatocellular carcinoma. Biochem Biophys Res Commun 196: 1010–1016.

    Article  CAS  Google Scholar 

  • Zhang X, Xu HJ, Murakami Y, Sachse R, Yashima K, Hirohashi S et al. (1994). Deletions of chromosome 13q, mutations in retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma. Cancer Res 54: 4177–4182.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S Knudsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, C., Mayhew, C., McClendon, A. et al. RB has a critical role in mediating the in vivo checkpoint response, mitigating secondary DNA damage and suppressing liver tumorigenesis initiated by aflatoxin B1. Oncogene 28, 4434–4443 (2009). https://doi.org/10.1038/onc.2009.303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.303

Keywords

This article is cited by

Search

Quick links