Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Macrophage-derived IL-1β stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3

Abstract

Tumor-associated macrophages mediate the link between inflammation and cancer progression. Here, we showed that macrophage-derived soluble factors induce canonical Wnt signaling in colon cancer cells and promote their growth. Tumor cells induced the release of interleukin (IL)-1β from macrophages, which induced phosphorylation of GSK3β, stabilized β-catenin, enhanced T-cell factor (TCF)-dependent gene activation and induced the expression of Wnt target genes in tumor cells. Neutralization experiments using anti-IL-1β-specific antibodies, or silencing of IL-1β in THP1 macrophages, showed that IL-1β was required for macrophages to induce Wnt signaling and to support the growth of tumor cells. Constitutive activation of signal transducer and activator of transcription (STAT)1 in THP1 macrophages was essential for the induction of IL-1β and thus for the activation of β-catenin signaling in tumor cells. Vitamin D3, an effective chemopreventive agent, interrupted this crosstalk by blocking the constitutive activation of STAT1 and the production of IL-1β in macrophages, and therefore—in a vitamin D receptor-dependent manner—inhibited the ability of macrophages to activate Wnt signaling in colon carcinoma cells. Our data therefore established that vitamin D3 exerts its chemopreventive activity by interrupting a crosstalk between tumor epithelial cells and the tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Albini A, Sporn MB . (2007). The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A . (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66: 1–9.

    Article  PubMed  Google Scholar 

  • Bissell MJ, Labarge MA . (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7: 17–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107: 2112–2122.

    Article  CAS  PubMed  Google Scholar 

  • Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T . (1998). Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194: 701–704.

    Article  CAS  PubMed  Google Scholar 

  • Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98: 10356–10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  • Etoh T, Shibuta K, Barnard GF, Kitano S, Mori M . (2000). Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin Cancer Res 6: 3545–3551.

    CAS  PubMed  Google Scholar 

  • Fichera A, Little N, Dougherty U, Mustafi R, Cerda S, Li YC et al. (2007). A vitamin D analogue inhibits colonic carcinogenesis in the AOM/DSS model. J Surg Res 142: 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R . (2007). High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13: 1472–1479.

    Article  CAS  PubMed  Google Scholar 

  • Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK, Gorham ED . (1989). Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet 2: 1176–1178.

    Article  CAS  PubMed  Google Scholar 

  • Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F et al. (2007). Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 104: 19977–19982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunter MJ, Canzian F, Landi S, Chanock SJ, Sinha R, Rothman N . (2006). Inflammation-related gene polymorphisms and colorectal adenoma. Cancer Epidemiol Biomarkers Prev 15: 1126–1131.

    Article  CAS  PubMed  Google Scholar 

  • Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG et al. (2008). ‘Re-educating’ tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205: 1261–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampman E, Slattery ML, Caan B, Potter JD . (2000). Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk (United States). Cancer Causes Control 11: 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M et al. (2006). Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441: 1015–1019.

    Article  CAS  PubMed  Google Scholar 

  • Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L . (2003). Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 1: 855–862.

    CAS  PubMed  Google Scholar 

  • Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L . (2004). Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression. J Biol Chem 279: 36680–36688.

    Article  CAS  PubMed  Google Scholar 

  • Klampfer L, Huang J, Shirasawa S, Sasazuki T, Augenlicht L . (2007). Histone deacetylase inhibitors induce cell death selectively in cells that harbor activated kRasV12: the role of signal transducers and activators of transcription 1 and p21. Cancer Res 67: 8477–8485.

    Article  CAS  PubMed  Google Scholar 

  • Klampfer L, Swaby LA, Huang J, Sasazuki T, Shirasawa S, Augenlicht L . (2005). Oncogenic Ras increases sensitivity of colon cancer cells to 5-FU-induced apoptosis. Oncogene 24: 3932–3941.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, O'Kelly J, Said JW, Koeffler HP . (2003). Vitamin D2 analog 19-nor-1,25-dihydroxyvitamin D2: antitumor activity against leukemia, myeloma, and colon cancer cells. J Natl Cancer Inst 95: 896–905.

    Article  CAS  PubMed  Google Scholar 

  • Kusmartsev S, Gabrilovich DI . (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174: 4880–4891.

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht SA, Lipkin M . (2003). Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer 3: 601–614.

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Lim HK, Sakong J, Lee YS, Kim JR, Baek SH . (2006). Janus kinase-signal transducer and activator of transcription mediates phosphatidic acid-induced interleukin (IL)-1beta and IL-6 production. Mol Pharmacol 69: 1041–1047.

    CAS  PubMed  Google Scholar 

  • Lin WW, Karin M . (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117: 1175–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipkin M, Lamprecht SA . (2006). Mechanisms of action of vitamin D: recent findings and new questions. J Med Food 9: 135–137.

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF et al. (2005). Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science 307: 734–738.

    Article  CAS  PubMed  Google Scholar 

  • Moon RT, Bowerman B, Boutros M, Perrimon N . (2002). The promise and perils of Wnt signaling through beta-catenin. Science 296: 1644–1646.

    Article  CAS  PubMed  Google Scholar 

  • Newmark HL, Lipkin M . (1992). Calcium, vitamin D, and colon cancer. Cancer Res 52: 2067s–2070s.

    CAS  PubMed  Google Scholar 

  • Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S et al. (2008). Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 27: 1671–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oosterling SJ, van der Bij GJ, Meijer GA, Tuk CW, van Garderen E, van Rooijen N et al. (2005). Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol 207: 147–155.

    Article  PubMed  Google Scholar 

  • Oyama T, Yamada Y, Hata K, Tomita H, Hirata A, Sheng H et al. (2008). Further upregulation of \{beta\}-catenin/Tcf transcription is involved in the de. Carcinogenesis 29: 666–672.

    Article  CAS  PubMed  Google Scholar 

  • Pai R, Dunlap D, Qing J, Mohtashemi I, Hotzel K, French DM . (2008). Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling. Cancer Res 68: 5086–5095.

    Article  CAS  PubMed  Google Scholar 

  • Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154: 369–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer HG, Larriba MJ, Garcia JM, Ordonez-Moran P, Pena C, Peiro S et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med 10: 917–919.

    Article  CAS  PubMed  Google Scholar 

  • Pendas-Franco N, Aguilera O, Pereira F, Gonzalez-Sancho JM, Munoz A . (2008). Vitamin D and Wnt/beta-catenin pathway in colon cancer: role and regulation of DICKKOPF genes. Anticancer Res 28: 2613–2623.

    CAS  PubMed  Google Scholar 

  • Pollard JW . (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS . (2005). Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 102: 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M et al. (2008). No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40: 650–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasola A, Fassetta M, De Bacco F, D'Alessandro L, Gramaglia D, Di Renzo MF et al. (2007). A positive feedback loop between hepatocyte growth factor receptor and beta-catenin sustains colorectal cancer cell invasive growth. Oncogene 26: 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  • Robsahm TE, Tretli S, Dahlback A, Moan J . (2004). Vitamin D3 from sunlight may improve the prognosis of breast-, colon- and prostate cancer (Norway). Cancer Causes Control 15: 149–158.

    Article  PubMed  Google Scholar 

  • Shah S, Hecht A, Pestell R, Byers SW . (2003). Trans-repression of beta-catenin activity by nuclear receptors. J Biol Chem 278: 48137–48145.

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Islam MN, Dakshanamurthy S, Rizvi I, Rao M, Herrell R et al. (2006). The molecular basis of vitamin D receptor and beta-catenin crossregulation. Mol Cell 21: 799–809.

    Article  PubMed  Google Scholar 

  • Shirasawa S, Furuse M, Yokoyama N, Sasazuki T . (1993). Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260: 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Siziopikou KP, Harris JE, Casey L, Nawas Y, Braun DP . (1991). Impaired tumoricidal function of alveolar macrophages from patients with non-small cell lung cancer. Cancer 68: 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD et al. (2004). Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Taketo MM . (2004). Shutting down Wnt signal-activated cancer. Nat Genet 36: 320–322.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T et al. (1982). Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42: 1530–1536.

    CAS  PubMed  Google Scholar 

  • Tsukada J, Waterman WR, Koyama Y, Webb AC, Auron PE . (1996). A novel STAT-like factor mediates lipopolysaccharide, interleukin 1 (IL-1), and IL-6 signaling and recognizes a gamma interferon activation site-like element in the IL1B gene. Mol Cell Biol 16: 2183–2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B et al. (2008). Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14: 408–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Lin C, Liu ZR . (2006). P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127: 139–155.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Paolo Norio for reading the paper. This work was supported by CA 111361 (to LK), U54 CA 100926 (to LA) and P30-13330 from NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Klampfer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaler, P., Augenlicht, L. & Klampfer, L. Macrophage-derived IL-1β stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene 28, 3892–3902 (2009). https://doi.org/10.1038/onc.2009.247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.247

Keywords

This article is cited by

Search

Quick links