Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties

Abstract

Growing evidence indicates that microRNAs have a significant role in tumor development and may constitute robust biomarkers for cancer diagnosis and prognosis. In this study, we evaluated the clinical and functional relevance of microRNA-122 (miR-122) expression in human hepatocellular carcinoma (HCC). We report that miR-122 is specifically repressed in a subset of primary tumors that are characterized by poor prognosis. We further show that the loss of miR-122 expression in tumor cells segregates with specific gene expression profiles linked to cancer progression, namely the suppression of hepatic phenotype and the acquisition of invasive properties. We identify liver-enriched transcription factors as central regulatory molecules in the gene networks associated with loss of miR-122, and provide evidence suggesting that miR-122 is under the transcriptional control of HNF1A, HNF3A and HNF3B. We further show that loss of miR-122 results in an increase of cell migration and invasion and that restoration of miR-122 reverses this phenotype. In conclusion, miR-122 is a marker of hepatocyte-specific differentiation and an important determinant in the control of cell migration and invasion. From a clinical point of view, our study emphasizes miR-122 as a diagnostic and prognostic marker for HCC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

HCC:

hepatocellular carcinoma

miRNA:

microRNA

References

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  Google Scholar 

  • Braconi C, Patel T . (2008). MicroRNA expression profiling: a molecular tool for defining the phenotype of hepatocellular tumors. Hepatology 47: 1807–1809.

    Article  CAS  Google Scholar 

  • Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A et al. (2008). Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47: 897–907.

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  Google Scholar 

  • Chang J, Guo JT, Jiang D, Guo H, Taylor JM, Block TM . (2008). Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol 82: 8215–8223.

    Article  CAS  Google Scholar 

  • Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA et al. (2004). miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1: 106–113.

    Article  CAS  Google Scholar 

  • Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW et al. (2008). Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48: 1810–1820.

    Article  CAS  Google Scholar 

  • Coulouarn C, Factor VM, Thorgeirsson SS . (2008). Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 47: 2059–2067.

    Article  CAS  Google Scholar 

  • Coulouarn C, Gomez-Quiroz LE, Lee JS, Kaposi-Novak P, Conner EA, Goldina TA et al. (2006). Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Hepatology 44: 1003–1011.

    Article  CAS  Google Scholar 

  • Czech MP . (2006). MicroRNAs as therapeutic targets. N Engl J Med 354: 1194–1195.

    Article  CAS  Google Scholar 

  • El-Serag HB . (2004). Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 127: S27–S34.

    Article  Google Scholar 

  • Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature 452: 896–899.

    Article  CAS  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3: 87–98.

    Article  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  Google Scholar 

  • Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A . (2008). miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 48: 648–656.

    Article  CAS  Google Scholar 

  • Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG et al. (2007). Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67: 6092–6099.

    Article  CAS  Google Scholar 

  • Grise F, Bidaud A, Moreau V . (2009). Rho GTPases in hepatocellular carcinoma. Biochim Biophys Acta 1795: 137–151.

    CAS  PubMed  Google Scholar 

  • Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C et al. (2008). microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27: 3300–3310.

    Article  CAS  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P . (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309: 1577–1581.

    Article  CAS  Google Scholar 

  • Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS . (2006). Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 116: 1582–1595.

    Article  CAS  Google Scholar 

  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS et al. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28: 6773–6784.

    Article  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  Google Scholar 

  • Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W et al. (2006). Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99: 671–678.

    Article  CAS  Google Scholar 

  • Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S et al. (2008). MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 47: 1955–1963.

    Article  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T . (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12: 735–739.

    Article  CAS  Google Scholar 

  • Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T et al. (2004a). Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40: 667–676.

    Article  CAS  Google Scholar 

  • Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, Reddy JK et al. (2004b). Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36: 1306–1311.

    Article  CAS  Google Scholar 

  • Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF et al. (2006). A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12: 410–416.

    Article  CAS  Google Scholar 

  • Lee JS, Thorgeirsson SS . (2002). Functional and genomic implications of global gene expression profiles in cell lines from human hepatocellular cancer. Hepatology 35: 1134–1143.

    Article  CAS  Google Scholar 

  • Li W, Xie L, He X, Li J, Tu K, Wei L et al. (2008). Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer 123: 1616–1622.

    Article  CAS  Google Scholar 

  • Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL . (2008). miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 375: 315–320.

    Article  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  Google Scholar 

  • Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T et al. (2006). Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25: 2537–2545.

    Article  CAS  Google Scholar 

  • Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL et al. (2004). Control of pancreas and liver gene expression by HNF transcription factors. Science 303: 1378–1381.

    Article  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  Google Scholar 

  • Tang X, Gal J, Zhuang X, Wang W, Zhu H, Tang G . (2007). A simple array platform for microRNA analysis and its application in mouse tissues. RNA 13: 1803–1822.

    Article  CAS  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147–152.

    Article  CAS  Google Scholar 

  • Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM et al. (2009). MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49: 1571–1582.

    Article  CAS  Google Scholar 

  • Thorgeirsson SS, Grisham JW . (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31: 339–346.

    Article  CAS  Google Scholar 

  • Thorgeirsson SS, Lee JS, Grisham JW . (2006). Functional genomics of hepatocellular carcinoma. Hepatology 43: S145–S150.

    Article  CAS  Google Scholar 

  • Tzur G, Levy A, Meiri E, Barad O, Spector Y, Bentwich Z et al. (2008). MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. PLoS ONE 3: e3726.

    Article  Google Scholar 

  • Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP et al. (2008). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47: 1223–1232.

    Article  CAS  Google Scholar 

  • Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM . (2007). Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 27: 55–76.

    Article  CAS  Google Scholar 

  • Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF et al. (2008). MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 135: 257–269.

    Article  CAS  Google Scholar 

  • Xue W, Krasnitz A, Lucito R, Sordella R, Vanaelst L, Cordon-Cardo C et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev 22: 1439–1444.

    Article  CAS  Google Scholar 

  • Yoshioka K, Imamura F, Shinkai K, Miyoshi J, Ogawa H, Mukai M et al. (1995). Participation of rhop21 in serum-dependent invasion by rat ascites hepatoma cells. FEBS Lett 372: 25–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported in part by the Intramural Research Program of the Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Thorgeirsson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulouarn, C., Factor, V., Andersen, J. et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28, 3526–3536 (2009). https://doi.org/10.1038/onc.2009.211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.211

Keywords

This article is cited by

Search

Quick links