Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: potential implications for the immunosurveillance of cancer

Abstract

The expression of the NKG2D ligands on cancer cells leads to their recognition and elimination by host immune responses mediated by natural killer and T cells. UL16-binding proteins (ULBPs) are NKG2D ligands, which are scarcely expressed in epithelial tumours, favouring their evasion from the immune system. Herein, we investigated the epigenetic mechanisms underlying the repression of ULBPs in epithelial cancer cells. We show that ULBP1–3 expression is increased in tumour cells after exposure to the inhibitor of histone deacetylases (HDACs) trichostatin A (TSA), which enhances the natural killer cell-mediated cytotoxicity of HeLa cells. Our experiments showed that the transcription factor Sp3 is crucial in the activation of the ULBP1 promoter by TSA. Furthermore, by small interfering RNA-mediated knockdown and overexpression of HDAC1–3, we showed that HDAC3 is a repressor of ULBPs expression in epithelial cancer cells. Remarkably, TSA treatment caused the complete release of HDAC3 from the ULBP1–3 promoters. HDAC3 is recruited to the ULBP1 promoter through its interaction with Sp3 and TSA treatment interfered with this association. Together, we describe a new mechanism by which cancer cells may evade the immune response through the epigenetic modulation of the ULBPs expression and provide a model in which HDAC inhibitors may favour the elimination of transformed cells by increasing the immunogenicity of epithelial tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ammanamanchi S, Freeman JW, Brattain MG . (2003). Acetylated sp3 is a transcriptional activator. J Biol Chem 278: 35775–35780.

    Article  CAS  Google Scholar 

  • Andresen L, Jensen H, Pedersen MT, Hansen KA, Skov S . (2007). Molecular regulation of MHC class I chain-related protein A expression after HDAC-inhibitor treatment of Jurkat T cells. J Immunol 179: 8235–8242.

    Article  CAS  Google Scholar 

  • Andrews NC, Faller DV . (1991). A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19: 2499.

    Article  CAS  Google Scholar 

  • Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M et al. (2005). Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 65: 6321–6329.

    Article  CAS  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. (1999). Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285: 727–729.

    Article  CAS  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    Article  CAS  Google Scholar 

  • Braun H, Koop R, Ertmer A, Nacht S, Suske G . (2001). Transcription factor Sp3 is regulated by acetylation. Nucleic Acids Res 29: 4994–5000.

    Article  CAS  Google Scholar 

  • Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W et al. (2001). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14: 123–133.

    Article  CAS  Google Scholar 

  • Chen L, Fischle W, Verdin E, Greene WC . (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293: 1653–1657.

    Article  CAS  Google Scholar 

  • Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U et al. (2008). NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 111: 1428–1436.

    Article  CAS  Google Scholar 

  • Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V, Brosch G et al. (1999). Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol 19: 5504–5511.

    Article  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD . (2004a). The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21: 137–148.

    Article  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD . (2004b). The three Es of cancer immunoediting. Annu Rev Immunol 22: 329–360.

    Article  CAS  Google Scholar 

  • Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E . (2001). Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 276: 35826–35835.

    Article  CAS  Google Scholar 

  • Glozak MA, Seto E . (2007). Histone deacetylases and cancer. Oncogene 26: 5420–5432.

    Article  CAS  Google Scholar 

  • González S, López-Soto A, Suárez-Álvarez B, López-Vázquez A, López-Larrea C . (2008). NKG2D ligands: key targets of the immune response. Trends Immunol 29: 397–403.

    Article  Google Scholar 

  • Groh V, Wu J, Yee C, Spies T . (2002). Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419: 734–738.

    Article  CAS  Google Scholar 

  • Kaiser BK, Yim D, Chow IT, González S, Dai Z, Mann HH et al. (2007). Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447: 482–486.

    Article  CAS  Google Scholar 

  • Karagianni P, Wong J . (2007). HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene 26: 5439–5449.

    Article  CAS  Google Scholar 

  • Kato N, Tanaka J, Sugita J, Toubai T, Miura Y, Ibata M et al. (2007). Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia 21: 2103–2108.

    Article  CAS  Google Scholar 

  • Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW . (2008). Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J 27: 1017–1028.

    Article  CAS  Google Scholar 

  • Kottilil S, Shin K, Jackson JO, Reitano KN, O'Shea MA, Yang J et al. (2006). Innate immune dysfunction in HIV infection: effect of HIV envelope-NK cell interactions. J Immunol 176: 1107–1114.

    Article  CAS  Google Scholar 

  • Kouzarides T . (2007). Chromatin modifications and their function. Cell 128: 693–705.

    Article  CAS  Google Scholar 

  • Lopez-Larrea C, Suarez-Alvarez B, Lopez-Soto A, Lopez-Vazquez A, Gonzalez S . (2008). The NKG2D receptor: sensing stressed cells. Trends Mol Med 14: 179–189.

    Article  CAS  Google Scholar 

  • López-Soto A, Quiñones-Lombrana A, López-Arbesú R, López-Larrea C, González S . (2006). Transcriptional regulation of ULBP1, a human ligand of the NKG2D receptor. J Biol Chem 281: 30419–30430.

    Article  Google Scholar 

  • Luo J, Su F, Chen D, Shiloh A, Gu W . (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408: 377–381.

    Article  CAS  Google Scholar 

  • Maio M, Coral S, Fratta E, Altomonte M, Sigalotti L . (2003). Epigenetic targets for immune intervention in human malignancies. Oncogene 22: 6484–6488.

    Article  CAS  Google Scholar 

  • Minucci S, Pelicci PG . (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51.

    Article  CAS  Google Scholar 

  • Nausch N, Cerwenka A . (2008). NKG2D ligands in tumor immunity. Oncogene 27: 5944–5958.

    Article  CAS  Google Scholar 

  • Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R et al. (2002). Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 62: 6178–6186.

    CAS  PubMed  Google Scholar 

  • Ropero S, Ballestar E, Alaminos M, Arango D, Schwartz Jr S, Esteller M . (2008). Transforming pathways unleashed by a HDAC2 mutation in human cancer. Oncogene 27: 4008–4012.

    Article  CAS  Google Scholar 

  • Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG et al. (2003). Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102: 1389–1396.

    Article  CAS  Google Scholar 

  • Saunders LR, Verdin E . (2007). Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26: 5489–5504.

    Article  CAS  Google Scholar 

  • Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, Odum N . (2005). Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 65: 11136–11145.

    Article  CAS  Google Scholar 

  • Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y . (2005). NKG2D function protects the host from tumor initiation. J Exp Med 202: 583–588.

    Article  CAS  Google Scholar 

  • Sowa Y, Orita T, Minamikawa-Hiranabe S, Mizuno T, Nomura H, Sakai T . (1999). Sp3, but not Sp1, mediates the transcriptional activation of the p21/WAF1/Cip1 gene promoter by histone deacetylase inhibitor. Cancer Res 59: 4266–4270.

    CAS  PubMed  Google Scholar 

  • Sun JM, Chen HY, Moniwa M, Litchfield DW, Seto E, Davie JR . (2002). The transcriptional repressor Sp3 is associated with CK2-phosphorylated histone deacetylase 2. J Biol Chem 277: 35783–35786.

    Article  CAS  Google Scholar 

  • Sutherland CL, Rabinovich B, Chalupny NJ, Brawand P, Miller R, Cosman D . (2006). ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood 108: 1313–1319.

    Article  CAS  Google Scholar 

  • Verdin E, Dequiedt F, Kasler HG . (2003). Class II histone deacetylases: versatile regulators. Trends Genet 19: 286–293.

    Article  CAS  Google Scholar 

  • Waldhauer I, Steinle A . (2008). NK cells and cancer immunosurveillance. Oncogene 27: 5932–5943.

    Article  CAS  Google Scholar 

  • Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y et al. (2006). Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281: 13548–13558.

    Article  CAS  Google Scholar 

  • Wooten-Blanks LG, Song P, Senkal CE, Ogretmen B . (2007). Mechanisms of ceramide-mediated repression of the human telomerase reverse transcriptase promoter via deacetylation of Sp3 by histone deacetylase 1. FASEB J 21: 3386–3397.

    Article  CAS  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA . (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26: 5541–5552.

    Article  CAS  Google Scholar 

  • Yang WM, Tsai SC, Wen YD, Fejer G, Seto E . (2002). Functional domains of histone deacetylase-3. J Biol Chem 277: 9447–9454.

    Article  CAS  Google Scholar 

  • Yokota T, Matsuzaki Y, Miyazawa K, Zindy F, Roussel MF, Sakai T . (2004). Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter. Oncogene 23: 5340–5349.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Spies and Amgen for kindly providing ULBP antibodies, Dr García de Herreros for providing HT-29 M6 cells, Banco de Tumores del Hospital Universitario Central de Asturias for providing human tumour samples, Dr G Gill for providing the pBS/U6-Scrambled plasmid, Dr A Astudillo for histopathological evaluation, Dr C López-Otín for helpful comments and A Vallina and MS Pitiot for technical assistance. This work was supported by the Spanish grants of Fondo de Investigaciones Sanitarias PI-06/0841. ALS holds a predoctoral fellowship from FICYT of Asturias (BP06-99).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gonzalez.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Soto, A., Folgueras, A., Seto, E. et al. HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: potential implications for the immunosurveillance of cancer. Oncogene 28, 2370–2382 (2009). https://doi.org/10.1038/onc.2009.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.117

Keywords

This article is cited by

Search

Quick links