Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II

Abstract

α-Tocopheryl succinate (α-TOS) is a selective inducer of apoptosis in cancer cells, which involves the accumulation of reactive oxygen species (ROS). The molecular target of α-TOS has not been identified. Here, we show that α-TOS inhibits succinate dehydrogenase (SDH) activity of complex II (CII) by interacting with the proximal and distal ubiquinone (UbQ)-binding site (QP and QD, respectively). This is based on biochemical analyses and molecular modelling, revealing similar or stronger interaction energy of α-TOS compared to that of UbQ for the QP and QD sites, respectively. CybL-mutant cells with dysfunctional CII failed to accumulate ROS and underwent apoptosis in the presence of α-TOS. Similar resistance was observed when CybL was knocked down with siRNA. Reconstitution of functional CII rendered CybL-mutant cells susceptible to α-TOS. We propose that α-TOS displaces UbQ in CII causing electrons generated by SDH to recombine with molecular oxygen to yield ROS. Our data highlight CII, a known tumour suppressor, as a novel target for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Accelrys (2001). Insight II. Accelrys Inc: San Diego.

  • Adam-Vizi V, Chinopoulos C . (2006). Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27: 639–645.

    Article  CAS  PubMed  Google Scholar 

  • Albayrak T, Scherhammer V, Schoenfeld N, Braziulis E, Mund T, Bauer MK et al. (2003). The tumor suppressor cybL, a component of the respiratory chain, mediates apoptosis induction. Mol Biol Cell 14: 3082–3096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen FH . (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 5: 380–388.

    Article  Google Scholar 

  • Allen RG, Balin AK . (2003). Effects of oxygen on the antioxidant responses of normal and transformed cells. Exp Cell Res 289: 307–316.

    Article  CAS  PubMed  Google Scholar 

  • Alleva R, Tomasetti M, Andera L, Gellert N, Borghi B, Weber C et al. (2001). Coenzyme Q blocks chemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection. FEBS Lett 503: 46–50.

    Article  CAS  PubMed  Google Scholar 

  • Berridge MV, Tan AS . (1993). Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303: 474–478.

    Article  CAS  PubMed  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11: 37–51.

    Article  CAS  PubMed  Google Scholar 

  • Burnell JN, John P, Whatley FR . (1975). The reversibility of active sulphate transport in membrane vesicles of Paracoccus denitrificans. Biochem J 150: 527–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case DA, Pearlman DA, Caldwell JW . (2002). Amber 7. University of California: San Francisco.

    Google Scholar 

  • Cheng VW, Ma E, Zhao Z, Rothery RA, Weiner JH . (2006). The iron-sulfur clusters in Escherichia coli succinate dehydrogenase direct electron flow. J Biol Chem 281: 27662–27668.

    Article  CAS  PubMed  Google Scholar 

  • Choudhry ZM, Gavrikova EV, Kotlyar AB, Tushurashvili PR, Vinogradov AD . (1985). Pyridoxal phosphate-induced dissociation of the succinate: ubiquinone reductase. FEBS Lett 182: 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Choudhry ZM, Kotlyar AB, Vinogradov AD . (1986). Studies on the succinate dehydrogenating system. Interaction of the mitochondrial succinate–ubiquinone reductase with pyridoxal phosphate. Biochim Biophys Acta 850: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS et al. (1993). Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci USA 90: 3113–3117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T et al. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL . Nat Cell Biol 3: 173–182.

    CAS  PubMed  Google Scholar 

  • Dias N, Bailly C . (2005). Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharmacol 70: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Don AS, Hogg PJ . (2004). Mitochondria as cancer drug targets. Trends Mol Med 10: 372–378.

    Article  CAS  PubMed  Google Scholar 

  • Dong LF, Swettenham E, Eliasson J, Wang XF, Gold M, Medunic Y et al. (2007). Vitamin E analogs inhibit angiogenesis by selective apoptosis induction in proliferating endothelial cells: the role of oxidative stress. Cancer Res 67: 11906–11913.

    Article  CAS  PubMed  Google Scholar 

  • Fariss MW, Nicholls-Grzemski FA, Tirmerstein MA, Zhang JG . (2001). Enhanced antioxidant and cytoprotective abilities of vitamin E succinate is associated with a rapid uptake advantage in rat hepatocytes and mitochondria. Free Radic Biol Med 31: 530–541.

    Article  CAS  PubMed  Google Scholar 

  • Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL . (2002). Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62: 3909–3913.

    CAS  PubMed  Google Scholar 

  • Gottlieb E, Tomlinson IP . (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5: 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89: 10578–10582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall N . (2005). Mitochondria: a novel target for the chemoprevention of cancer. Apoptosis 10: 687–705.

    Article  Google Scholar 

  • Hartshorn MJ . (2002). AstexViewer™: an aid for structure-based drug design. J Comput Aided Mol Des 16: 871–881.

    Article  CAS  PubMed  Google Scholar 

  • Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY et al. (2006). 3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 281: 5965–5972.

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N et al. (1998). A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and aging in nematodes. Nature 349: 694–697.

    Article  Google Scholar 

  • Ishii N, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N . (2005). A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res 65: 203–209.

    CAS  PubMed  Google Scholar 

  • James AM, Sharpley MS, Manas AB, Frerman FE, Hirst J, Smith RAJ et al. (2007). Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem 282: 14708–14718.

    Article  CAS  PubMed  Google Scholar 

  • James EM, Cocheme HM, Smith RA, Murphy MP . (2005). Interactions of mitochondria-targeted and -untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280: 21295–21312.

    Article  CAS  PubMed  Google Scholar 

  • Kang YH, Lee E, Choi MK, Ku JL, Kim SH, Park YG et al. (2004). Role of reactive oxygen species in the induction of apoptosis by α-tocopheryl succinate. Int J Cancer 112: 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC et al. (2001). Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276: 4588–4596.

    Article  CAS  PubMed  Google Scholar 

  • Ko YH, Pedersen PL, Geschwind JF . (2001). Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173: 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al. (2004). Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324: 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Kogure K, Hama S, Manabe S, Tokumura A, Fukuzawa K . (2002). High cytotoxicity of α-tocopheryl hemisuccinate to cancer cells is due to failure of their antioxidative defense systems. Cancer Lett 186: 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Lahouel M, Zini R, Zellagui A, Rhouati S, Carrupt PA, Morin D . (2007). Ferulenol specifically inhibits succinate ubiquinone reductase at the level of the ubiquinone cycle. Biochem Biophys Res Commun 355: 252–257.

    Article  CAS  PubMed  Google Scholar 

  • Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P et al. (2007). Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282: 8860–8872.

    Article  CAS  PubMed  Google Scholar 

  • Maehara Y, Kusumoto T, Kusumoto H, Anai H, Sugimachi K . (1988). Sodium succinate enhances the colorimetric reaction of the in vitro chemosensitivity test: MTT assay. Oncology 5: 434–436.

    Article  Google Scholar 

  • McLennan HR, Degli-Esposti M . (2000). The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32: 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Milanesi E, Costantini P, Gambalunga A, Colonna R, Petronilli V, Cabrelle A et al. (2006). The mitochondrial effects of small organic ligands of BCL-2: sensitization of BCL-2-overexpressing cells to apoptosis by a pyrimidine-2,4,6-trione derivative. J Biol Chem 281: 10066–10072.

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS . (1998). Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19: 1639–1662.

    Article  CAS  Google Scholar 

  • Neuzil J, Massa H . (2005). Hepatic processing determines dual activity of vitamin E succinate. Biochem Biophys Res Commun 327: 1024–1027.

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J, Tomasetti M, Zhao Y, Dong LF, Birringer M, Wang XF et al. (2007). Vitamin E analogs, a novel group of ‘mitocans’, as anti-cancer agents: the importance of being redox-silent. Mol Pharmacol 71: 1185–1199.

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ . (2006). Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580: 5125–5129.

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J, Weber T, Gellert N, Weber C . (2001a). Selective cancer cell killing by α-tocopheryl succinate. Br J Cancer 84: 87–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuzil J, Weber T, Schröder A, Lu M, Ostermann G, Gellert N et al. (2001b). Induction of apoptosis in cancer cells by α-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15: 403–415.

    Article  CAS  PubMed  Google Scholar 

  • Newmeyer DD, Ferguson-Miller S . (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112: 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Niemann S, Muller U . (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26: 268–270.

    Article  CAS  PubMed  Google Scholar 

  • Oostveen FG, Au HC, Meijer PJ, Scheffler IE . (1995). A Chinese hamster mutant cell line with a defect in the integral membrane protein CII-3 of complex II of the mitochondrial electron transport chain. J Biol Chem 270: 26104–26108.

    Article  CAS  PubMed  Google Scholar 

  • Ralph SJ, Dyason JC, Freeman R, Dong LF, Prochazka L, Wang XF et al. (2007). Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr 39: 65–72.

    Article  PubMed  Google Scholar 

  • Rice JE, Lindsay JG . (1997). Subcellular fractionation of mitochondria. In: Graham JM, Rickwood D (eds.) Subcellular Fractionation. A Practical Approach Series. Oxford University Press: Oxford, UK, pp 107–142.

    Google Scholar 

  • Robinson BW, Musk AW, Lake RA . (2005). Malignant mesothelioma. Lancet 366: 397–408.

    Article  CAS  PubMed  Google Scholar 

  • Safford SE, Oberley TD, Urano M, St Clair DK . (1994). Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res 54: 4261–4265.

    CAS  PubMed  Google Scholar 

  • Sanborn BM, Felberg NT, Hollocher TC . (1971). The inactivation of succinate dehydrogenase by bromopyruvate. Biochim Biophys Acta 227: 219–231.

    Article  CAS  PubMed  Google Scholar 

  • Sanner MF . (1999). Python: a programming language for software integration and development. J Mol Graph Mod 17: 57–61.

    CAS  Google Scholar 

  • Scallet AC, Haley RL, Scallet DM, Duhart HM, Binieda ZK . (2003). 3-Nitropropionic acid inhibition of succinate dehydrogenase (complex II) activity in cultured Chinese hamster ovary cells: antagonism by L-carnitine. Ann NY Acad Sci 993: 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Seo BB, Kitajima-Ihara T, Chan EK, Scheffler IE, Matsuno-Yagi A, Yagi T . (1997). Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc Natl Acad Sci USA 95: 9167–9171.

    Article  Google Scholar 

  • Sever N, Lee PC, Song BL, Rawson RB, Debose-Boyd RA . (2004). Isolation of mutant cells lacking Insig-1 through selection with SR-12813, an agent that stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 279: 43136–43147.

    Article  CAS  PubMed  Google Scholar 

  • Shiau CW, Huang JW, Wang DS, Weng JR, Yang CC, Lin CH et al. (2006). Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J Biol Chem 281: 11819–11825.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE et al. (2006). Mutation of succinate dehydrogenase subunit C results in increased oxidative stress, and genomic instability. Cancer Res 66: 7615–7620.

    Article  CAS  PubMed  Google Scholar 

  • Soller M, Drose S, Brandt U, Brune B, von Knethen A . (2007). Mechanism of thiazolidinedione-dependent cell death in Jurkat T cells. Mol Pharmacol 71: 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  • Spencer TL . (1977). The transport and oxidation of succinate by Ehrlich ascites-tumour cells. Biochem J 160: 121–123.

    Article  Google Scholar 

  • Stapelberg M, Gellert N, Swettenham E, Tomasetti M, Witting PK, Procopio A et al. (2005). Tocopheryl succinate inhibits malignant mesothelioma by disruption of the FGF autocrine signaling loop: mechanism and the role of oxidative stress. J Biol Chem 280: 25369–25376.

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D et al. (2005). Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121: 1043–1057.

    Article  CAS  PubMed  Google Scholar 

  • Swettenham E, Witting PK, Salvatore BA, Neuzil J. . (2005). Tocopheryl succinate selectively induces apoptosis in neuroblastoma cells: potential therapy of malignancies of the nervous system? J Neurochem 94: 1448–1456.

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10: 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH . (2006). The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b. J Biol Chem 281: 32310–32317.

    Article  CAS  PubMed  Google Scholar 

  • Trounce IA, Kim YL, Jun AS, Wallace DC . (1996). Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Meth Enzymol 264: 484–509.

    Article  CAS  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM . (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8: 127–134.

    Article  CAS  PubMed  Google Scholar 

  • Wang XF, Birringer M, Dong LF, Veprek P, Low P, Swettenham E et al. (2007). A peptide adduct of vitamin E succinate targets breast cancer cells with high erbB2 expression. Cancer Res 67: 3337–3344.

    Article  CAS  PubMed  Google Scholar 

  • Wang XF, Witting PK, Salvatore BA, Neuzil J . (2005). Tocopheryl succinate induces apoptosis in HER2/erbB2-overexpressing breast cancer cells by signalling via the mitochondrial pathway. Biochem Biophys Res Commun 326: 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Dalen H, Andera L, Nègre-Salvayre A, Augé N, Sticha M et al. (2003). Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate, an agent with anticancer activity. Biochemistry 42: 4277–4291.

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Lu M, Andera L, Lahm H, Gellert N, Fariss MW et al. (2002). Vitamin E succinate is a potent novel anti-neoplastic agent with high tumor selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, Apo2L) in vivo. Clin Cancer Res 8: 863–869.

    CAS  PubMed  Google Scholar 

  • Word JM, Lovell SC, Richardson JS, Richardson DC . (1999). Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285: 1735–1747.

    Article  CAS  PubMed  Google Scholar 

  • Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al. (2005). Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65: 613–621.

    CAS  PubMed  Google Scholar 

  • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C et al. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299: 700–704.

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Yu CA . (1983). Inhibitory effect of α-tocopherol and its derivatives on bovine heart succinate-cytochrome c reductase. Biochim Biophys Acta 723: 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JG, Tirmerstein MA, Nicholls-Grzemski FA, Fariss MW . (2001). Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and -independent cell death: protective role of antioxidants. Arch Biochem Biophys 393: 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Rothery RA, Weiner JH . (2006). Effects of site-directed mutations in Escherichia coli succinate dehydrogenase on the enzyme activity and production of superoxide radicals. Biochem Cell Biol 84: 1013–1021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor RAJ Smith for providing MitoQ, and Professor RK Ralph and Professor JW Eaton for critical reading of the manuscript. This work was supported in part by grants from the National Breast Cancer Foundation, the Queensland Cancer Fund and the Australian Research Council (Discovery Grant DP0453372 to JN and Fellowship DP0343325 to PKW), and a grants from the Academy of Sciences of the Czech Republic (IAA500520702 and KAN2005207203 to JN), and by a grant from the Ministry of Agriculture of the Czech Republic (MZE 0002716201 to JT). DRS and FED were supported by NIH grants RO1-CA100045 (DRS) and NIH RO1-CA73612 (FED).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S J Ralph or J Neuzil.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, LF., Low, P., Dyason, J. et al. α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27, 4324–4335 (2008). https://doi.org/10.1038/onc.2008.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.69

Keywords

This article is cited by

Search

Quick links