Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway

Abstract

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and has been shown to induce apoptosis in cancer cells but not normal cells. TRAIL triggers apoptosis through binding to its receptors DR4 and KILLER/DR5. Chemo or radiotherapy induces apoptosis through activation of p53 in response to cellular damage, whereas TRAIL induces apoptosis independent of p53. Mutations or deletions of p53 occurred in more than half of human tumors confer resistance to chemo-radiotherapy. Treatment of TRAIL-resistant tumors with agents targeting death receptors, intrinsic Bcl-2 family members, inhibitor of apoptosis proteins or PI3K/Akt pathway restores the sensitivity to TRAIL-induced apoptosis. Combination of rhTRAIL or the agonist antibody for TRAIL receptor with conventional chemotherapeutic agents results in enhanced efficacy in preventing tumor progression and metastasis. Therefore, the rational design of TRAIL-based therapy combining with other modality that either synergizes to apoptosis induction or overcomes the resistance represents a challenging strategy to achieve the systemic tumor targeting and augment the antitumor activity of cancer therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Adams C, Totpal K, Lawrence D, Marsters S, Pitti R, Yee S et al. (2008). Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5. Cell Death Differ 15: 751–761.

    CAS  PubMed  Google Scholar 

  • Ashkenazi A . (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2: 420–430.

    CAS  PubMed  Google Scholar 

  • Ashkenazi A, Herbst RS . (2008). To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118: 1979–1990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenstein T . (2005). The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 17: 180–186.

    CAS  PubMed  Google Scholar 

  • Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P et al. (2000). TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2: 241–243.

    CAS  PubMed  Google Scholar 

  • Burns TF, El-Deiry WS . (2001). Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 276: 37879–37886.

    CAS  PubMed  Google Scholar 

  • Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC . (2004). Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 11: 915–923.

    CAS  PubMed  Google Scholar 

  • Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705–711.

    CAS  PubMed  Google Scholar 

  • Clohessy JG, Zhuang J, de Boer J, Gil-Gómez G, Brady HJ . (2006). Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J Biol Chem 281: 5750–5759.

    CAS  PubMed  Google Scholar 

  • Corazza N, Jakob S, Schaer C, Frese S, Keogh A, Stroka D et al. (2006). TRAIL receptor-mediated JNK activation and Bim phosphorylation critically regulate Fas-mediated liver damage and lethality. J Clin Invest 116: 2493–2499.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ . (2002). Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168: 1356–1361.

    CAS  PubMed  Google Scholar 

  • Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG . (1997a). The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7: 813–820.

    CAS  PubMed  Google Scholar 

  • Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF et al. (1997b). Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186: 1165–1170.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Lin Y, Wu X . (2002). TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16: 33–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl GE, Yue HH, Hsieh K, Kuang AA, Ho M, Morici LA et al. (2004). TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21: 877–889.

    CAS  PubMed  Google Scholar 

  • Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C et al. (1998). Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273: 14363–14367.

    CAS  PubMed  Google Scholar 

  • Finnberg N, Gruber JJ, Fei P, Rudolph D, Bric A, Kim SH et al. (2005). DR5 knockout mice are compromised in radiation-induced apoptosis. Mol Cell Biol 25: 2000–2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finnberg N, Klein-Szanto AJ, El-Deiry WS . (2008). TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J Clin Invest 118: 111–123.

    CAS  PubMed  Google Scholar 

  • Fulda S, Wick W, Weller M, Debatin KM . (2002). Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8: 808–815.

    CAS  PubMed  Google Scholar 

  • Georgakis GV, Li Y, Rassidakis GZ, Martinez-Valdez H, Medeiros LJ, Younes A . (2006). Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin's lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res 12: 584–590.

    CAS  PubMed  Google Scholar 

  • Gliniak B, Le T . (1999). Tumor necrosis factor-related apoptosis-inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 59: 6153–6158.

    CAS  PubMed  Google Scholar 

  • Grosse-Wilde A, Voloshanenko O, Bailey SL, Longton GM, Schaefer U, Csernok AI et al. (2008). TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J Clin Invest 118: 100–110.

    CAS  PubMed  Google Scholar 

  • Hall MA, Cleveland JL . (2007). Clearing the TRAIL for cancer therapy. Cancer Cell 12: 4–6.

    CAS  PubMed  Google Scholar 

  • Hersey P, Zhang XD . (2001). How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer 1: 142–150.

    CAS  PubMed  Google Scholar 

  • Hopkins-Donaldson S, Ziegler A, Kurtz S, Bigosch C, Kandioler D, Ludwig C et al. (2003). Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ 10: 356–364.

    CAS  PubMed  Google Scholar 

  • Hotte SJ, Hirte HW, Chen EX, Siu LL, Le LH, Corey A et al. (2008). A phase 1 study of Mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res 14: 3450–3455.

    CAS  PubMed  Google Scholar 

  • Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M, Kelley RF et al. (1999). Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 4: 563–571.

    CAS  PubMed  Google Scholar 

  • Jin X, Wu XX, Abdel-Muneem Nouh MA, Kakehi Y . (2007). Enhancement of death receptor 4 mediated apoptosis and cytotoxicity in renal cell carcinoma cells by subtoxic concentrations of doxorubicin. J Urol 177: 1894–1899.

    CAS  PubMed  Google Scholar 

  • Kaelin Jr WG . (2007). The von hippel-lindau tumor suppressor protein: an update. Methods Enzymol 435: 371–383.

    CAS  PubMed  Google Scholar 

  • Kataoka T . (2005). The caspase-8 modulator c-FLIP. Crit Rev Immunol 25: 31–58.

    CAS  PubMed  Google Scholar 

  • Khanbolooki S, Nawrocki ST, Arumugam T, Andtbacka R, Pino MS, Kurzrock R et al. (2006). Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Mol Cancer Ther 5: 2251–2260.

    CAS  PubMed  Google Scholar 

  • Kim M, Liao J, Dowling ML, Voong KR, Parker SE, Wang S et al. (2008a). TRAIL inactivates the mitotic checkpoint and potentiates death induced by microtubule-targeting agents in human cancer cells. Cancer Res 68: 3440–3449.

    CAS  PubMed  Google Scholar 

  • Kim M, Park SY, Pai HS, Kim TH, Billiar TR, Seol DW . (2004a). Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res 64: 4078–4081.

    CAS  PubMed  Google Scholar 

  • Kim SH, Kim K, Kwagh JG, Dicker DT, Herlyn M, Rustgi AK et al. (2004b). Death induction by recombinant native TRAIL and its prevention by a caspase 9 inhibitor in primary human esophageal epithelial cells. J Biol Chem 279: 40044–40052.

    CAS  PubMed  Google Scholar 

  • Kim SH, Ricci MS, El-Deiry WS . (2008b). Mcl-1: a gateway to TRAIL sensitization. Cancer Res 68: 2062–2064.

    CAS  PubMed  Google Scholar 

  • Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A . (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12: 611–620.

    CAS  PubMed  Google Scholar 

  • Laguinge LM, Samara RN, Wang W, El-Deiry WS, Corner G, Augenlicht L et al. (2008). DR5 receptor mediates anoikis in human colorectal carcinoma cell lines. Cancer Res 68: 909–917.

    CAS  PubMed  Google Scholar 

  • Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B et al. (2001). Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7: 383–385.

    CAS  PubMed  Google Scholar 

  • LeBlanc H, Lawrence D, Varfolomeev E, Totpal K, Morlan J, Schow P et al. (2002). Tumor-cell resistance to death receptor—induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8: 274–281.

    CAS  PubMed  Google Scholar 

  • Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG . (2004). A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305: 1471–1474.

    CAS  PubMed  Google Scholar 

  • Lin Y, Devin A, Cook A, Keane MM, Kelliher M, Lipkowitz S et al. (2000). The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. Mol Cell Biol 20: 6638–6645.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Yu Y, Zhang M, Wang W, Cao X . (2001). The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. J Immunol 166: 5407–5415.

    CAS  PubMed  Google Scholar 

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE et al. (1994). p53 status and the efficacy of cancer therapy in vivo. Science 266: 807–810.

    CAS  PubMed  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Housman DE . (1993a). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967.

    CAS  PubMed  Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T . (1993b). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849.

    CAS  PubMed  Google Scholar 

  • Lub-de Hooge MN, de Vries EG, de Jong S, Bijl M . (2005). Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus. Ann Rheum Dis 64: 854–858.

    CAS  PubMed  Google Scholar 

  • Mace TA, Yamane N, Cheng J, Hylander BL, Repasky EA . (2006). The potential of the tumor microenvironment to influence Apo2L/TRAIL induced apoptosis. Immunol Invest 35: 279–296.

    CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC . (2007). AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marini P, Denzinger S, Schiller D, Kauder S, Welz S, Humphreys R et al. (2006). Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene 25: 5145–5154.

    CAS  PubMed  Google Scholar 

  • Marsters SA, Sheridan JP, Donahue CJ, Pitti RM, Gray CL, Goddard AD et al. (1996). Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol 6: 1669–1676.

    CAS  PubMed  Google Scholar 

  • Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D et al. (1997). A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7: 1003–1006.

    CAS  PubMed  Google Scholar 

  • Meng XW, Lee SH, Dai H, Loegering D, Yu C, Flatten K et al. (2007). Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem 282: 29831–29846.

    CAS  PubMed  Google Scholar 

  • Mérino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O . (2006). Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26: 7046–7055.

    PubMed  PubMed Central  Google Scholar 

  • Mongkolsapaya J, Grimes JM, Chen N, Xu XN, Stuart DI, Jones EY et al. (1999). Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol 6: 1048–1053.

    CAS  PubMed  Google Scholar 

  • Ozören N, El-Deiry WS . (2002). Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia 4: 551–557.

    PubMed  PubMed Central  Google Scholar 

  • Ozoren N, Kim K, Burns TF, Dicker DT, Moscioni AD, El-Deiry WS . (2000). The caspase 9 inhibitor Z-LEHD-FMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 60: 6259–6265.

    CAS  PubMed  Google Scholar 

  • Pai SI, Wu GS, Ozören N, Wu L, Jen J, Sidransky D et al. (1998). Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 58: 3513–3518.

    CAS  PubMed  Google Scholar 

  • Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM . (1997a). An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277: 815–818.

    CAS  PubMed  Google Scholar 

  • Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J et al. (1997b). The receptor for the cytotoxic ligand TRAIL. Science 276: 111–113.

    CAS  PubMed  Google Scholar 

  • Panner A, James CD, Berger MS, Pieper RO . (2005). mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol 25: 8809–8823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pespeni MH, Hodnett M, Abayasiriwardana KS, Roux J, Howard M, Broaddus VC et al. (2007). Sensitization of mesothelioma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by heat stress via the inhibition of the 3-phosphoinositide-dependent kinase 1/Akt pathway. Cancer Res 67: 2865–2871.

    CAS  PubMed  Google Scholar 

  • Ravi R, Bedi A . (2002). Potential methods to circumvent blocks in apoptosis in lymphomas. Curr Opin Oncol 14: 490–503.

    CAS  PubMed  Google Scholar 

  • Ray S, Bucur O, Almasan A . (2005). Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor. Apoptosis 10: 1411–1418.

    CAS  PubMed  Google Scholar 

  • Ricci MS, Jin Z, Dews M, Yu D, Thomas-Tikhonenko A, Dicker DT et al. (2004). Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 24: 8541–8555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W et al. (2007). Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12: 66–80.

    CAS  PubMed  Google Scholar 

  • Romagnoli M, Desplanques G, Maïga S, Legouill S, Dreano M, Bataille R et al. (2007). Canonical nuclear factor kappaB pathway inhibition blocks myeloma cell growth and induces apoptosis in strong synergy with TRAIL. Clin Cancer Res 13: 6010–6018.

    CAS  PubMed  Google Scholar 

  • Rosato RR, Almenara JA, Coe S, Grant S . (2007). The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res 67: 9490–9500.

    CAS  PubMed  Google Scholar 

  • Schneider P, Olson D, Tardivel A, Browning B, Lugovskoy A, Gong D et al. (2003). Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 278: 5444–5454.

    CAS  PubMed  Google Scholar 

  • Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D et al. (1997). Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277: 818–821.

    CAS  PubMed  Google Scholar 

  • Shrader M, Pino MS, Lashinger L, Bar-Eli M, Adam L, Dinney CP et al. (2007). Gefitinib reverses TRAIL resistance in human bladder cancer cell lines via inhibition of AKT-mediated X-linked inhibitor of apoptosis protein expression. Cancer Res 67: 1430–1435.

    CAS  PubMed  Google Scholar 

  • Singh TR, Shankar S, Srivastava RK . (2005). HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 24: 4609–4623.

    CAS  PubMed  Google Scholar 

  • Sinicrope FA, Penington RC, Tang XM . (2004). Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis is inhibited by Bcl-2 but restored by the small molecule Bcl-2 inhibitor, HA 14-1, in human colon cancer cells. Clin Cancer Res 10: 8284–8292.

    CAS  PubMed  Google Scholar 

  • Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, Yagita H . (2003). Nature's TRAIL—on a path to cancer immunotherapy. Immunity 18: 1–6.

    CAS  PubMed  Google Scholar 

  • Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J et al. (2000). FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12: 599–609.

    CAS  PubMed  Google Scholar 

  • Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S et al. (2001). Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7: 94–100.

    CAS  PubMed  Google Scholar 

  • Trauzold A, Siegmund D, Schniewind B, Sipos B, Egberts J, Zorenkov D et al. (2006). TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25: 7434–7439.

    CAS  PubMed  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    CAS  PubMed  Google Scholar 

  • Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K et al. (2007). Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13: 1070–1077.

    CAS  PubMed  Google Scholar 

  • Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N et al. (1997). TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16: 5386–5397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157–163.

    CAS  PubMed  Google Scholar 

  • Wandinger KP, Lünemann JD, Wengert O, Bellmann-Strobl J, Aktas O, Weber A et al. (2003). TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet 361: 2036–2043.

    CAS  PubMed  Google Scholar 

  • Wang S, El-Deiry WS . (2003a). Requirement of p53 targets in chemosensitization of colonic carcinoma to death ligand therapy. Proc Natl Acad Sci USA 100: 15095–15100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, El-Deiry WS . (2003b). TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22: 8628–8633.

    CAS  PubMed  Google Scholar 

  • Wang S, El-Deiry WS . (2004). Inducible silencing of KILLER/DR5 in vivo promotes bioluminescent colon tumor xenograft growth and confers resistance to chemotherapeutic agent 5-fluorouracil. Cancer Res 64: 6666–6672.

    CAS  PubMed  Google Scholar 

  • Wang Y, Engels IH, Knee DA, Nasoff M, Deveraux QL, Quon KC . (2004). Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell 5: 501–512.

    CAS  PubMed  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673–682.

    CAS  PubMed  Google Scholar 

  • Wu GS, Burns TF, McDonald III ER, Jiang W, Meng R, Krantz ID et al. (1997). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17: 141–143.

    CAS  PubMed  Google Scholar 

  • Wu GS, Burns TF, Zhan Y, Alnemri ES, El-Deiry WS . (1999). Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res 59: 2770–2775.

    CAS  PubMed  Google Scholar 

  • Younes M, Georgakis GV, Rahmani M, Beer D, Younes A . (2006). Functional expression of TRAIL receptors TRAIL-R1 and TRAIL-R2 in esophageal adenocarcinoma. Eur J Cancer 42: 542–547.

    CAS  PubMed  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X . (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr Wafik S El-Deiry at the University of Pennsylvania for his mentorship and for critical comments on this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S. The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene 27, 6207–6215 (2008). https://doi.org/10.1038/onc.2008.298

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.298

Keywords

This article is cited by

Search

Quick links