Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Drug discovery approaches targeting the PI3K/Akt pathway in cancer

Abstract

The abnormal activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been validated by epidemiological and experimental studies as an essential step toward the initiation and maintenance of human tumors. Notable in this regard are the prevalent somatic genetic alterations leading to the inactivation of the tumor suppressor gene PTEN and gain-of-function mutations targeting PIK3CA—the gene encoding the catalytic phosphosinositide-3 kinase subunit p110α. A number of the intracellular components of this pathway have been targeted as anticancer drug discovery activities leading to the current panoply of clinical trials of inhibitors of PI3K, Akt and HSP90 in man. This review summarizes current preclinical knowledge of modulators of the PI3K/Akt pathway in which drug discovery and development activities have been advanced focusing on both the relevant clinical stage inhibitors and other disclosed tool compounds targeting PI3K, PDK1, Akt and HSP90.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abraham RT . (2004). PI3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair 3: 883–887.

    CAS  PubMed  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. (1996). Mechanism of activation of protein kinase B by insulin and IGF-I. EMBO J 15: 6541–6551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B. Curr Biol 7: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P et al. (2002). Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem 277: 27613–27621.

    CAS  PubMed  Google Scholar 

  • Barnett SF, Defeo-Jones D, Fu S, Hancok PJ, Haskell K, Jones RE et al. (2005). Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385: 399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N . (2002). Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277: 39858–39866.

    CAS  PubMed  Google Scholar 

  • Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D et al. (1998). Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17: 313–325.

    CAS  PubMed  Google Scholar 

  • Biondi RM, Cheung PCF, Casamayor A, Deak M, Currie RA, Alessi DR . (2000). Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J 19: 979–988.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop SC, Burlison JA, Blagg BSJ . (2007). Hsp90: a novel target for the disruption of multiple signaling cascades. Curr Med Chem 7: 369–388.

    CAS  Google Scholar 

  • Bozulic L, Surucu B, Hynx D, Hemmings BA . (2008). PKBα/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30: 203–213.

    CAS  PubMed  Google Scholar 

  • Breitenlechner CB, Friebe WG, Brunet E, Werner G, Graul K, Thomas U et al. (2005). Design and crystal structures of protein kinase B-selective inhibitors in complex with protein kinase A and mutants. J Med Chem 48: 163–170.

    CAS  PubMed  Google Scholar 

  • Breitenlechner CB, Wegge T, Berillon L, Graul K, Marzenell K, Friebe WG et al. (2004). Structure-based optimization of novel azepane derivatives as PKB inhibitors. J Med Chem 47: 1375–1390.

    CAS  PubMed  Google Scholar 

  • Brian PW, Hemming HG, Norris GLF . (1957). Wotmannin, an antibiotic produced by penicillium wortmanni. Br Mycol Soc Trans 40: 365–368.

    CAS  Google Scholar 

  • Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE et al. (2008). 4,5-Diaryl-lisoxazole hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51: 196–218.

    CAS  PubMed  Google Scholar 

  • Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JFM . (2008). The PTEN/PI3K/Akt signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8: 187–198.

    CAS  PubMed  Google Scholar 

  • Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al. (2007). A transforming mutation in the plecstrin homology domain of Akt1 in cancer. Nature 448: 439–444.

    CAS  PubMed  Google Scholar 

  • Casamayor A, Morrice NA, Alessi DR . (1999). Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem J 342: 287–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandarlapaty S, Sawai A, Ye Q, Scott A, Silinski M, Huang K et al. (2008). SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin Cancer Res 14: 240–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JS, Zhou LJ, Entin-Meer M, Yang X, Donker M, Knight ZA et al. (2008). Characterization of structurally distinct, isoform-selective phosphoinosite 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Mol Cancer Ther 7: 841–850.

    CAS  PubMed  Google Scholar 

  • Chiosis G, Vilenchik M, Kim J, Solit D . (2004). Hsp90: the vulnerable chaperone. Drug Discov Today 9: 881–888.

    CAS  PubMed  Google Scholar 

  • Dasmahapatra GP, Didolkar P, Alley MC, Ghosh S, Sausville EA, Roy KK . (2004). In vitro combination treatment with perifosine and UCN-01 demonstrates synergism against prostate (PC-3) and lung (A549) epithelial adenocarcinoma cell lines. Clinl Cancer Res 10: 5242–5252.

    CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P . (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies TD, Verdonk ML, Graham B, Saalau-Bethell S, Hamlett CCF, McHardy T et al. (2007). A structural comparison of inhibitor binding to PKB, PKA and PKA–PKB chimera. J Mol Biol 367: 882–894.

    CAS  PubMed  Google Scholar 

  • Davis PD, Elliott LH, Harris W, Hill CH, Hurst SA, Keech E et al. (1992). Inhibitors of protein kinase C. 2. Substituted bisindolylmaleimides with improved potency and selectivity. J Med Chem 35: 994–1001.

    CAS  PubMed  Google Scholar 

  • Downward J . (2006). PI-3 kinase, Akt and cell survival. Semin Cell Dev Biol 15: 177–182.

    Google Scholar 

  • Dymock BW, Drysdale MJ, McDonald E, Workman P . (2004). Inhibitors of Hsp90 and other chaperones for the treatment of cancer. Expert Opin Ther Pat 14: 837–847.

    CAS  Google Scholar 

  • Eccles S, Massey A, Raynaud FI, Sharp SY, Bax G, Valenti M et al. (2008). NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 68: 2850–2860.

    CAS  PubMed  Google Scholar 

  • Engel J, Hilgard P, Klenner T, Kutscher B, Nossner G, Traiser M et al. (2000). Perifosine: oncolytic, ether phospholipid. Drugs Future 25: 1257–1260.

    CAS  Google Scholar 

  • Engelman JA, Chen L, McNamara K, Upadhyay R, Crosby K, Maira M et al. (2008). Differential efficacy of PI3K inhibition in PIK3CA and K-Ras driven murine lung cancers (submitted).

  • Ernst DS, Eisenhauer E, Wainman N, Davis M, Lohmann R, Baetz T et al. (2005). Phase II study of perifosine in previously untreated patients with metastatic melanoma. Invest New Drugs 23: 569–575.

    CAS  PubMed  Google Scholar 

  • Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM et al. (2007). A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67: 7960–7965.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D et al. (2005). Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem 280: 19867–19874.

    CAS  PubMed  Google Scholar 

  • Feng J, Park J, Cron P, Hess D, Hemmings BA . (2004). Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279: 41189–41196.

    CAS  PubMed  Google Scholar 

  • Foster PG . (2007). Potentiating the antitumor effects of chemotherapy with the selective PI3K inhibitor XL147. 19th AACR-NCI-EORTC Meeting (abstract C199).

  • Fujita N, Tsuruo T . (2003). Survival-signaling pathway as a promising target for cancer chemotherapy. Cancer Chemother Pharmacol 52: S24–S28.

    CAS  PubMed  Google Scholar 

  • Fujita N, Sato S, Ishida A, Tsuruo T . (2002). Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 277: 10346–10353.

    CAS  PubMed  Google Scholar 

  • Garlich JR, De P, Dey N, Su JD, Peng X, Miller A et al. (2008). A vascular targeted pan phosphoinosite 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 68: 206–215.

    CAS  PubMed  Google Scholar 

  • Gassel M, Breitenlechner CB, Ruger P, Jucknischke U, Schneider T, Huber R et al. (2003). Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (Akt). J Mol Biol 329: 1021–1034.

    CAS  PubMed  Google Scholar 

  • Ge J, Normant E, Porter JR, Dembski MS, Gao Y, Georges AT et al. (2008). Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-Amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90. J Med Chem 49: 4606–4615.

    Google Scholar 

  • Han E-H, Leverson JD, McGonigal T, Shah OJ, Woods KW, Hunter T et al. (2007). Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 26: 5655–5661.

    CAS  PubMed  Google Scholar 

  • Hartnett JC, Barnett SF, Bilodeau MT, Defeo-Jones D, Hartman GD, Huber HE et al. (2008). Optimization of 2,3,5-trisubstitued pyridine derivatives as potent allosteric Akt1 and Akt2 inhibitors. Bioorg Med Chem Lett 18: 2194–2197.

    CAS  PubMed  Google Scholar 

  • Hennessy BT, Lu Y, Poradosu E, Yu Q, Yu S, Hall H et al. (2007). Pharmacodynamic markers of perifosine efficacy. Clinc Cancer Res 13: 7421–7431.

    CAS  Google Scholar 

  • Hill MM, Hemmings BA . (2002). Inhibition of protein kinase B/Akt implications for cancer therapy. Pharmacol Ther 93: 243–251.

    CAS  PubMed  Google Scholar 

  • Hill MM, Andjelkovic M, Brazil DP, Ferrari S, Fabbro D, Hemmings BA . (2001). Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase. J Biol Chem 276: 25643–25646.

    CAS  PubMed  Google Scholar 

  • Hollingshead M, Alley M, Burger AM, Borgel S, Pacula-Cox C, Fiebig H-H et al. (2005). In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldnamycin derivative. Cancer Chemother Pharmacol 58: 115–125.

    Google Scholar 

  • Howes AL, Chiang GG, Lang ES, Ho CB, Powis G, Vuori K et al. (2007). The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 6: 2505–2514.

    CAS  PubMed  Google Scholar 

  • Hsu AL, Chingm TT, Wang DS, Song S, Rangnekar VM, Chen CS . (2000). The cyclooxygenase-2 inhibitor celocoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275: 11397–11403.

    CAS  PubMed  Google Scholar 

  • Huang C-H, Mandelker D, Schmidt-Kittler O, Samuels Y, Veculescu VE, Kinzler KW et al. (2007). The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kαmutations. Science 318: 1744–1748.

    CAS  PubMed  Google Scholar 

  • Huston A, Leleu X, Jia X, Moreau A-S, Ngo HT, Runnels J et al. (2008). Targeting Akt and heat shock protein 90 produces synergistic multiple myeloma cell cytotoxicity in the bone marrow microenvironment. Clin Cancer Res 14: 865–874.

    CAS  PubMed  Google Scholar 

  • Ihle NT, Paine-Murrieta G, Berggren MI, Baker A, Tate WR, Wipf P et al. (2005). The phosphatidylionositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Mol Cancer Ther 4: 1349–1357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam I, Brown G, Bryant J, Hrvatin P, Kochanny MJ, Phillips GB et al. (2007a). Indoline-based phosphoinositide-dependent kinase-1 (PDK1) inhibitors. Part 2: optimization of BX-517. Bioorg Med Chem Lett 17: 3819–3825.

    CAS  PubMed  Google Scholar 

  • Islam I, Bryant J, Chou Y-L, Kochanny MJ, Lee W, Phillips GB et al. (2007b). Indoline-based phosphoinositide-dependent kinase-1 (PDK1) inhibitors. Part 1: design, synthesis and biological activity. Bioorg Med Chem Lett 17: 3814–3818.

    CAS  PubMed  Google Scholar 

  • Janin YL . (2005). Heat shock protein 90 inhibitors. A text book example of medicinal chemistry? J Med Chem 48: 7503–7512.

    CAS  PubMed  Google Scholar 

  • Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J et al. (2008). NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10: R33.

    PubMed  PubMed Central  Google Scholar 

  • Jia W, Yu C, Rahmani M, Krystal G, Sausville EA, Dent P et al. (2003). Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways. Blood 102: 1824–1832.

    CAS  PubMed  Google Scholar 

  • Jones PF, Jakubowicz T, Hemmings BA . (1991a). Molecular cloning of a second form of rac protein kinase. Cell Regul 2: 1001–1009.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA . (1991b). Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA 88: 4171–4175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight ZA, Chiang GG, Alaimo PJ, Kenski DM, Ho CB, Coan K et al. (2004). Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg Med Chem 12: 4749–4759.

    CAS  PubMed  Google Scholar 

  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al. (2006). Pharmacological map of the PI3K family defines a role for p110αin insulin signaling. Cell 125: 733–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter Downes C et al. (2004). Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23: 3918–3928.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komander D, Kular GS, Bain J, Elliott M, Alessi DR, van Aalten DMF . (2003). Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Biochem J 375: 255–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK . (2003). Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2: 1093–1103.

    CAS  PubMed  Google Scholar 

  • Kondapaka SB, Zarnowski MJ, Yver DR, Sausville EA, Cushman SW . (2004). 7-hydroxystaurosporine (UCN-01) inhibition of Akt Thr308 but not Ser473 phosphorylation. A basis for decreased insulin-stimulated glucose transport. Clin Cancer Res 10: 7192–7198.

    CAS  PubMed  Google Scholar 

  • Kumar CC, Diao R, Yin Z, Liu Y, Samatar AA, Madison V et al. (2001). Expression, purification, characterization and homology modeling of active Akt/PKB, a key enzyme involved in cell survival signaling. Biochim Biophys Acta 1526: 257–268.

    CAS  PubMed  Google Scholar 

  • Laird D . (2007). XL765 targets tumor growth, survival, and angiogenesis in preclinical models by dual inhibition of PI3K and mTOR. 19th AACR-NCI-EORTC Meeting (abstract B250).

  • Lawlor MA, Mora A, Ashby PR, Williams MR, Murray-Tait V, Malone L et al. (2002). Essential role of PDK1 in regulating cell size and development in mice. EMBO J 21: 3728–3738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhu GD . (2002). Targeting serine/threonine protein kinase B/Akt and cell-cycle checkpoint kinases for treating cancer. Curr Top Med Chem 2: 939–971.

    CAS  PubMed  Google Scholar 

  • Li X, Luwor R, Lu Y, Liang K, Fan Z . (2006). Enhancement of antitumor activity of the anti-EGF receptor monoclonal antibody cetuximab/C225 by perifosine in PTEN-deficient cancer cells. Oncogene 25: 525–535.

    CAS  PubMed  Google Scholar 

  • Lindsley CW, Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D et al. (2005). Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 15: 761–764.

    CAS  PubMed  Google Scholar 

  • Lundgren K, Zhang H, Kamal A, Lough R, Timple N, Sensintaffar J et al. (2007). BIIB021 is a small molecule inhibitor of the heat shock protein, Hsp90, that shows potent anti-tumor activity in preclinical models. 19th AACR-NCI-EORTC Meeting (abstract B161).

  • Luo Y, Shoemaker AR, Liu X, Woods KW, Thomas SA, de Jong R et al. (2005). Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol Cancer Res 4: 977–986.

    CAS  Google Scholar 

  • Maira S-M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al. (2008a). Identification and characterization of NVP-BEZ235, a new orally available dual PI3K/mTor inhibitor with potent in vivo antitumor activity. Mol Cancer Ther (in press); e-pub ahead of print.

  • Maira S-M, Voliva C, Garcia-Echeverria C . (2008b). Class IA PI3 Kinase: from their biological implication in human cancers to drug discovery. Expert Opin Ther Targets 12: 223–238.

    CAS  PubMed  Google Scholar 

  • Marrer E, Maira S-M, Schnell C, Garcia-Echeverria C . (2008). Integrative approaches to investigate the molecular basis of the in vivo activity of NVP-BEZ235, a dual pan-PI3K/mTOR inhibitor. Proc Am Assoc Cancer Res AACR 99th Annual Meeting (abstract 215).

  • Mitsiades CS, Mitsiades N, Koutsilieris M . (2004). The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4: 235–256.

    CAS  PubMed  Google Scholar 

  • Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R et al. (2007). Combination of trastuzumab and tanespimycin (17-AAG, KOS-593) is safe and active in trastuzumab-refractory HER-2-overexpressing breast cancer: a Phase I dose escalation study. J Clin Oncol 25: 5410–5417.

    CAS  PubMed  Google Scholar 

  • Mora A, Komander D, van Aalten DMF, Alessi DR . (2004). PDK1, the master regulator of AGC kinase signal transduction. Sem Cell Dev Biol 15: 161–170.

    CAS  Google Scholar 

  • Neckers L, Neckers K . (2002). Heat–shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Exp Opin Emerg Drugs 7: 277–288.

    CAS  Google Scholar 

  • Patnaik A, Lorusso PM, Tabernero J, Laird AD, Aggarwal SK, Papadopoulos KP . (2007). Biomarker development for XL765, a potent and selective oral dual inhibitor of PI3K and mTOR currently being administered to patients in a phase I clinical trial. EORTC-Meeting (abstract B265).

  • Posadas EM, Gulley J, Arlen PM, Trout A, Parnes HL, Wright J et al. (2005). A Phase II study of perifosine in androgen independent prostate cancer. Cancer Biol Ther 4: 1133–1137.

    CAS  PubMed  Google Scholar 

  • Ramanathan RK, Egorin MJ, Eiseman JL, Ramalingan S, Friedlan D, Agarwala SV et al. (2007). Phase I and pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with refractory advanced cancers. Clin Cancer Res 13: 1769–1774.

    CAS  PubMed  Google Scholar 

  • Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S et al. (2007). Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 67: 5840–5850.

    CAS  PubMed  Google Scholar 

  • Redaelli A, Lee JM, Stephens JM, Pashos CL . (2003). Epidemiology and clinical burden of acute myeloid leukemia. Expert Rev Anticancer Ther 3: 695–710.

    CAS  PubMed  Google Scholar 

  • Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ et al. (2008). Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res 68: 2366–2374.

    CAS  PubMed  Google Scholar 

  • Roe SM, Podromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH . (1999). Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42: 260–266.

    CAS  PubMed  Google Scholar 

  • Ruiter GA, Zerp SF, Bartelin H, Van Blitterswijk WJ, Verheij M . (2003). Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 14: 167–173.

    CAS  PubMed  Google Scholar 

  • Safa O, Parkin SM, Bibby MC . (1998). Morphological changes and cytokine gene expression in tumor xenografts following treatment with alkylphosphocholines hexadecylphosphocholine and perifosine. Drugs Today 34: 15–26.

    CAS  Google Scholar 

  • Sarbassov D, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  • Sato S, Fujita N, Tsuruo T . (2002). Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 21: 1727–1738.

    CAS  PubMed  Google Scholar 

  • Sayle KL, Bentley J, Boyle FT, Calvert AH, Cheng Y, Curtin NJ et al. (2003). Structure-based design of 2-arylamino-4-cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinases 1 and 2. Bioorg Med Chem Lett 13: 3079–3082.

    CAS  PubMed  Google Scholar 

  • Schnell C, Stauffer F, Allegrini PR, O'Reilly T, McSheehy PMJ, Dartois C et al. (2008). Effects of the dual PI3K/mTOR inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res; e-pub ahead of print.

  • Serra V, Markman B, Scaltriti M, Eichhorn P, Valero V, Guzman M et al. (2008). NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits growth of cancer cells with activating PI3K mutations. Cancer Res; e-pub ahead of print.

  • Shapiro GI, Edelman G, Calvo E, Aggarwal SK, Laird AD . (2007). Targeting aberrant PI3K pathway signaling with XL147, a potent, selective, and orally bioavailable PI3K inhibitor. 19th AACR-NCI-EORTC Meeting (abstract C205).

  • Shi Y, Liu X, Han E, Guan R, Shoemaker AR, Oleksijew A et al. (2005). Optimal classes of chemotherapeutic agents sensitized by specific small-molecule inhibitors of akt in vitro and in vivo. Neoplasia 7: 992–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N . (2003). Inhibition of Heat Shock Protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63: 2139–2144.

    CAS  PubMed  Google Scholar 

  • Stebbins CE, Russo AA, Scheneider C, Rosen N, Hartl FU, Pavletich NP . (1997). Crystal structure of an Hsp90-geldanamycin complex: target a protein chaperone by an antitumour agent. Cell 89: 239–250.

    CAS  PubMed  Google Scholar 

  • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB et al. (1998). Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279: 710–714.

    CAS  PubMed  Google Scholar 

  • Stokoe D, Stephens LR, Copeland T, Gaffney PRJ, Reese CB, Painter GF et al. (1997). Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277: 567–570.

    CAS  PubMed  Google Scholar 

  • Stühmer T, Zöllinger A, Siegmund D, Chatterjee M, Grella E, Knop S et al. (2008). Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia (advance online publication).

  • Sydor J, Normant E, Pien CS, Porter JR, Ge J, Grenier L et al. (2006). Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci USA 103: 17408–17413.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian ZQ, Liu Y, Zhang D, Wang Z, Dong SD, Carreras CW et al. (2004). Synthesis and biological activities of novel 17-aminogeldanamycin derivatives. Bioorg Med Chem 12: 5317–5329.

    CAS  PubMed  Google Scholar 

  • Tokunaga E, Oki E, Egashira A, Sadanaga N, Morito M, Kakeji Y et al. (2008). Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets 8: 27–36.

    CAS  PubMed  Google Scholar 

  • Toral-Barza L, Zhang W-G, Huang X, McDonald LA, Salaski EJ, Barbieri LR et al. (2007). Discovery of lactoquinomycin and related pyranonaphthoquinones as potent and allosteric inhibitors of Akt/PKB: mechanistic involvement of Akt catalytic action loop cysteines. Mol Cancer Ther 6: 3028–3038.

    CAS  PubMed  Google Scholar 

  • Traiser M, Reichert S, Voss A . (1998). Current development status of the second generation alkylphosphochloline analog perifosine. Drugs Today 34: 67–71.

    CAS  Google Scholar 

  • Vlahos CJ, Matter WF, Hui KY, Brown RF . (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269: 5241–5248.

    CAS  PubMed  Google Scholar 

  • Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP et al. (2001). Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Molecular Cell 6: 909–919.

    Google Scholar 

  • Walker EH, Perisic O, Ried C, Stephens L, Williams RL . (2000). Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402: 313–320.

    Google Scholar 

  • Welch S, Hirte HW, Carey MS, Hotte SJ, Tsao MS, Brown S et al. (2007). UCN-01 in combination with topotecan in patients with advanced recurrent ovarian cancer: a study of the Princess Margaret Hospital Phase II consortium. Gynecol Oncol 106: 305–310.

    CAS  PubMed  Google Scholar 

  • Weterings E, Chen DJ . (2007). DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys? J Cell Biol 179: 183–186.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesell L, Lindquist SL . (2005). Hsp90 and the chaperoning of cancer. Nat Rev 5: 761–772.

    CAS  Google Scholar 

  • Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD et al. (1996). Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16: 1722–1733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Backer JM . (2007). Regulation of class III (Vps34) PI3Ks. Biochem Soc Trans 35: 239–241.

    CAS  PubMed  Google Scholar 

  • Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D . (2002a). Crystal structure of an activated Akt/Protein Kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol 9: 940–944.

    CAS  PubMed  Google Scholar 

  • Yang J, Cron P, Thompson V, Good VM, Hess D, Hemmings BA et al. (2002b). Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Molecular Cell 9: 1227–1240.

    CAS  PubMed  Google Scholar 

  • Yu K, Lucas J, Zhu T, Zask A, Gaydos C, Toral-Barza L et al. (2005). PWT-458, a novel pegylated-17-dydroxywortmannin, inhibits phosphatidylinositol 3-kinase signaling and suppresses growth of solid tumors. Cancer Biol Ther 4: 538–545.

    CAS  PubMed  Google Scholar 

  • Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J et al. (2008). The role of class IA PI3K in vasculogenesis and tumor angiogenesis. Proc Natl Acad Sci USA (advance online publication).

  • Zahler S, Tietze S, Totzke F, Kubbutat M, Meijer L, Vollmar AM et al. (2007). Inverse in silico screening for identification of kinase inhibitor targets. Chem Biol 14: 1207–1214.

    CAS  PubMed  Google Scholar 

  • Zhao Z, Leister WH, Robinson RG, Stanley FB, Defeo-Jones D, Jones RE et al. (2005). Discovery of 2,3,5-trisubstitued pyridine derivatives as potent Akt and Akt2 dual inhibitors. Bioorg Med Chem Lett 15: 905–909.

    CAS  PubMed  Google Scholar 

  • Zhao Z, Robinson RG, Barnett SF, Defeo-Jones D, Jones RE, Hartman GD et al. (2008). Development of potent, allosteric dual Akt1 and Akt2 inhibitors with improved physical properties and cell activity. Bioorg Med Chem Lett 18: 49–53.

    PubMed  Google Scholar 

  • Zhu J, Huang J-W, Tseng P-H, Yang Y-T, Fowble J, Shiau C-W et al. (2004). From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Research 64: 4309–4318.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Garcia-Echeverria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Echeverria, C., Sellers, W. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27, 5511–5526 (2008). https://doi.org/10.1038/onc.2008.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.246

Keywords

This article is cited by

Search

Quick links