Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of transcriptional stalling at cisplatin-damaged DNA

Abstract

The anticancer drug cisplatin forms 1,2-d(GpG) DNA intrastrand cross-links (cisplatin lesions) that stall RNA polymerase II (Pol II) and trigger transcription-coupled DNA repair. Here we present a structure-function analysis of Pol II stalling at a cisplatin lesion in the DNA template. Pol II stalling results from a translocation barrier that prevents delivery of the lesion to the active site. AMP misincorporation occurs at the barrier and also at an abasic site, suggesting that it arises from nontemplated synthesis according to an 'A-rule' known for DNA polymerases. Pol II can bypass a cisplatin lesion that is artificially placed beyond the translocation barrier, even in the presence of a G·A mismatch. Thus, the barrier prevents transcriptional mutagenesis. The stalling mechanism differs from that of Pol II stalling at a photolesion, which involves delivery of the lesion to the active site and lesion-templated misincorporation that blocks transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of a cisplatin-damaged Pol II elongation complex.
Figure 2: Pol II stalling and misincorporation.
Figure 3: The cisplatin lesion is not stably accommodated in the active site.
Figure 4: Lesion bypass.
Figure 5: Different mechanisms of Pol II stalling at dinucleotide lesions.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Wang, D. & Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005).

    Article  CAS  Google Scholar 

  2. Kartalou, M. & Essigmann, J.M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res. 478, 1–21 (2001).

    Article  CAS  Google Scholar 

  3. Jung, Y. & Lippard, S.J. Multiple states of stalled T7 RNA polymerase at DNA lesions generated by platinum anticancer agents. J. Biol. Chem. 278, 52084–52092 (2003).

    Article  CAS  Google Scholar 

  4. Corda, Y., Job, C., Anin, M.F., Leng, M. & Job, D. Transcription by eucaryotic and procaryotic RNA polymerases of DNA modified at a d(GG) or a d(AG) site by the antitumor drug cis-diamminedichloroplatinum(II). Biochemistry 30, 222–230 (1991).

    Article  CAS  Google Scholar 

  5. Corda, Y., Job, C., Anin, M.F., Leng, M. & Job, D. Spectrum of DNA-platinum adduct recognition by prokaryotic and eukaryotic DNA-dependent RNA polymerases. Biochemistry 32, 8582–8588 (1993).

    Article  CAS  Google Scholar 

  6. Tornaletti, S., Patrick, S.M., Turchi, J.J. & Hanawalt, P.C. Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA. J. Biol. Chem. 278, 35791–35797 (2003).

    Article  CAS  Google Scholar 

  7. Jung, Y. & Lippard, S.J. RNA polymerase II blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase. J. Biol. Chem. 281, 1361–1370 (2006).

    Article  CAS  Google Scholar 

  8. Brueckner, F., Hennecke, U., Carell, T. & Cramer, P. CPD damage recognition by transcribing RNA polymerase II. Science 315, 859–862 (2007).

    Article  CAS  Google Scholar 

  9. Kettenberger, H., Armache, K.-J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).

    Article  CAS  Google Scholar 

  10. Gelasco, A. & Lippard, S.J. NMR solution structure of a DNA dodecamer duplex containing a cis-diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. Biochemistry 37, 9230–9239 (1998).

    Article  CAS  Google Scholar 

  11. Takahara, P.M., Rosenzweig, A.C., Frederick, C.A. & Lippard, S.J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377, 649–652 (1995).

    Article  CAS  Google Scholar 

  12. Kashkina, E. et al. Template misalignment in multisubunit RNA polymerases and transcription fidelity. Mol. Cell 24, 257–266 (2006).

    Article  CAS  Google Scholar 

  13. Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001).

    Article  CAS  Google Scholar 

  14. Strauss, B.S. The 'A rule' of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions? Bioessays 13, 79–84 (1991).

    Article  CAS  Google Scholar 

  15. Taylor, J.S. New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions. Mutat. Res. 510, 55–70 (2002).

    Article  CAS  Google Scholar 

  16. Wind, M. & Reines, D. Transcription elongation factor SII. Bioessays 22, 327–336 (2000).

    Article  CAS  Google Scholar 

  17. Thomas, M.J., Platas, A.A. & Hawley, D.K. Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93, 627–637 (1998).

    Article  CAS  Google Scholar 

  18. Tremeau-Bravard, A., Riedl, T., Egly, J.M. & Dahmus, M.E. Fate of RNA polymerase II stalled at a cisplatin lesion. J. Biol. Chem. 279, 7751–7759 (2004).

    Article  CAS  Google Scholar 

  19. Laine, J.P. & Egly, J.M. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J. 25, 387–397 (2006).

    Article  CAS  Google Scholar 

  20. Armache, K.-J., Kettenberger, H. & Cramer, P. Architecture of the initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6964–6968 (2003).

    Article  CAS  Google Scholar 

  21. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1996).

    Article  Google Scholar 

  23. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  24. Armache, K.-J., Mitterweger, S., Meinhart, A. & Cramer, P. Structures of complete RNA polymerase II and its subcomplex Rpb4/7. J. Biol. Chem. 280, 7131–7134 (2005).

    Article  CAS  Google Scholar 

  25. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Cramer laboratory for help. P.C. and T.C. were supported by the Deutsche Forschungsgemeinschaft, the Sonderforschungsbereich SFB646 and the Fonds der chemischen Industrie. P.C. was supported by the EU grant 3D repertoire, contract no. LSHG-CT-2005-512028. G.E.D. and F.B. were supported by the Elite Netzwerk Bayern. A.A. was supported by the Marie Curie training and mobility network CLUSTOX DNA.

Author information

Authors and Affiliations

Authors

Contributions

G.E.D. performed and analyzed biochemical and crystallographic experiments. A.A. synthesized cisplatin-containing DNA strands and performed MALDI experiments. F.B. assisted with experiments and crystallography. T.C. supervised the project. P.C. supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Thomas Carell or Patrick Cramer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 (PDF 1161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damsma, G., Alt, A., Brueckner, F. et al. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat Struct Mol Biol 14, 1127–1133 (2007). https://doi.org/10.1038/nsmb1314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing