Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport

Abstract

Many extracellular signal–regulated kinase (ERK) mitogen-activated protein (MAP) kinase substrates have been identified, but the diversity of ERK-mediated processes suggests the existence of additional targets. Using a phosphoproteomic approach combining the steroid receptor fusion system, IMAC, 2D-DIGE and phosphomotif-specific antibodies, we detected 38 proteins showing reproducible phosphorylation changes between ERK-activated and ERK-inhibited samples, including 24 new candidate ERK targets. ERK directly phosphorylated at least 13 proteins in vitro. Of these, Nup50 was verified as a bona fide ERK substrate. Notably, ERK phosphorylation of the FG repeat region of Nup50 reduced its affinity for importin-β family proteins, importin-β and transportin. Other FG nucleoporins showed a similar functional change after ERK-mediated phosphorylation. Nuclear migration of importin-β and transportin was impaired in ERK-activated, digitonin-permeabilized cells, as a result of ERK phosphorylation of Nup50. Thus, we propose that ERK phosphorylates various nucleoporins to regulate nucleocytoplasmic transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of ERK pathway components with a combination of the estrogen receptor fusion system, IMAC, 2D-DIGE and phosphomotif-specific antibodies.
Figure 2: Identification of ERK pathway components and confirmation by two-dimensional western blotting.
Figure 3: In vitro kinase assays with candidate substrates for ERK.
Figure 4: Validation of Nup50 as a novel ERK substrate.
Figure 5: Phosphorylation of Nup50 by ERK reduces its affinity for importin-β and transportin.
Figure 6: ERK phosphorylates Nup153 and Nup214 and regulates their interaction with importin-β.
Figure 7: Nuclear migration of importin-β and transportin is impaired in ERK-activated, digitonin-permeabilized cells.
Figure 8: Phosphorylation of Nup50 is involved in the ERK-mediated inhibition of nuclear translocation of importin-β.

Similar content being viewed by others

References

  1. Ubersax, J.A. & Ferrell, J.E. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, S.A. & Hunter, T. Kinomics: methods for deciphering the kinome. Nat. Methods 2, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, P. & Knebel, A. KESTREL: a powerful method for identifying the physiological substrates. Biochem. J. 393, 1–6 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Eblen, S.T. et al. Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs. J. Biol. Chem. 278, 14926–14935 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Fukunaga, R. & Hunter, T. Identification of MAPK substrates by expression screening with solid-phase phosphorylation. Methods Mol. Biol. 250, 211–236 (2004).

    CAS  PubMed  Google Scholar 

  6. Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Görg, A., Weiss, W. & Dunn, M.J. Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–3685 (2004).

    Article  PubMed  Google Scholar 

  11. Oh, P. et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Stasyk, T. et al. Phosphoproteome profiling of transforming growth factor (TGF)-β signaling: Abrogation of TGFβ1-dependent phosphorylation of transcription factor-II-I (TFII-I) enhances cooperation of TFII-I and Smad3 in transcription. Mol. Biol. Cell 16, 4765–4780 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Collins, M.O. et al. Proteomics analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 280, 5972–5982 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Dubrovska, A. & Souchelnytskyi, S. Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 5, 4678–4683 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Machida, M. et al. Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J. 274, 1576–1587 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ueda, K., Kosako, H., Fukui, Y. & Hattori, S. Proteomic identification of Bcl2-associated athanogene 2 as a novel MAPK-activated protein kinase 2 substrate. J. Biol. Chem. 279, 41815–41821 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Timms, J.F. & Cramer, R. Difference gel electrophoresis. Proteomics 8, 4886–4897 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Tang, W. et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557–560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lewis, T.S., Shapiro, P.S. & Ahn, N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).

    CAS  PubMed  Google Scholar 

  21. Yoon, S. & Seger, R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lewis, T.S. et al. Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell 6, 1343–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Roberts, E.C., Hammond, K., Trish, A.M., Resing, K.A. & Ahn, N.G. Identification of G2/M targets for the MAP kinase pathway by functional proteomics. Proteomics 6, 4541–4553 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Allen, J.J. et al. A semisynthetic epitope for kinase substrates. Nat. Methods 4, 511–516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Terry, L.J., Shows, E.B. & Wente, S.R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Onischenko, E.A., Gubanova, N.V., Kiseleva, E.V. & Hallberg, E. Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol. Biol. Cell 16, 5152–5162 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pritchard, C.A., Samuels, M.L., Bosch, E. & McMahon, M. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol. 15, 6430–6442 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. & Cantley, L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez, F.A., Raden, D.L. & Davis, R.J. Identification of substrate recognition determinants for human Erk1 and Erk2 protein kinases. J. Biol. Chem. 266, 22159–22163 (1991).

    CAS  PubMed  Google Scholar 

  31. Czubryt, M.P., Austria, J.A. & Pierce, G.N. Hydrogen peroxide inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase, ERK2. J. Cell Biol. 148, 7–16 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsubayashi, Y., Fukuda, M. & Nishida, E. Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J. Biol. Chem. 276, 41755–41760 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Whitehurst, A.W. et al. ERK2 enters the nucleus by a carrier-independent mechanism. Proc. Natl. Acad. Sci. USA 99, 7496–7501 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsuura, Y. & Stewart, M. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J. 24, 3681–3689 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lindsay, M.E., Plafker, K., Smith, A.E., Clurman, B.E. & Macara, I.G. Npap60/Nup50 is a tri-stable switch that stimulates importin-α:β-mediated nuclear protein import. Cell 110, 349–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Hase, M.E. & Cordes, V.C. Direct interaction with Nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol. Biol. Cell 14, 1923–1940 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harel, A. & Forbes, D.J. Importin β: conducting a much larger cellular symphony. Mol. Cell 16, 319–330 (2004).

    CAS  PubMed  Google Scholar 

  38. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kinoshita-Kikuta, E., Aoki, Y., Kinoshita, E. & Koike, T. Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol. Cell. Proteomics 6, 356–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kose, S., Imamoto, N., Tachibana, T., Shimamoto, T. & Yoneda, Y. Ran-unassisted nuclear migration of a 97-kD component of nuclear pore-targeting complex. J. Cell Biol. 139, 841–849 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gerner, C. et al. The Fas-induced apoptosis analyzed by high throughput proteome analysis. J. Biol. Chem. 275, 39018–39026 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Glavy, J.S. et al. Cell-cycle-dependent phosphorylation of the nuclear pore Nup107–160 subcomplex. Proc. Natl. Acad. Sci. USA 104, 3811–3816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smolka, M.B., Albuquerque, C.P., Chen, S.H. & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl. Acad. Sci. USA 104, 10364–10369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, T. et al. Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol. Cell 14, 43–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Vomastek, T. et al. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol. Cell. Biol. 28, 6954–6966 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iwamatsu, A. S-Carboxymethylation of proteins transferred onto polyvinylidene difluoride membranes followed by in situ protease digestion and amino acid microsequencing. Electrophoresis 13, 142–147 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Funakoshi, T. et al. Two distinct human POM121 genes: requirement for the formation of nuclear pore complexes. FEBS Lett. 581, 4910–4916 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Gu, Y., Hamajima, N. & Ihara, Y. Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry 39, 4267–4275 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Imamoto, N. et al. The nuclear pore-targeting complex binds to nuclear pores after association with a karyophile. FEBS Lett. 368, 415–419 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Adam, S.A., Sterne-Marr, R. & Gerace, L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111, 807–816 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hirano, J. Inagawa, T. Noda, M. Tanaka, M. Kikkawa and L. Yamada for technical assistance with 2D-DIGE and LC-MS/MS analysis; M.-Y. Han, M. Kobayashi, M. Machida, K. Ueda, R. Ohtsuka, T. Nishimura, N. Iida and H. Suzuki for experimental assistance; K. Shirakabe for constructing the plasmid expressing GST-fused DYNC1LI1 and critical comments; S. Matsubara and M. Iwata for secretarial assistance; and Y. Okada for fruitful discussions and advice. We also thank Y. Gu and Y. Ihara (Doshisha University) for providing C4G anti–CRMP-2 mouse mAb and M. McMahon (University of California, San Francisco) for providing ΔB-Raf:ER cells. This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (to H.K.) and Encouraging Development Strategic Research Centers Program, the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science, and Technology (to S.H.). This work was also supported by grants from the Nakajima Foundation (to H.K.) and the Novartis Foundation (Japan) for the Promotion of Science (to S.H.). This work was developed and coordinated under the framework of the program for the International Research and Educational Institute for Integrated Medical Sciences (IREIIMS).

Author information

Authors and Affiliations

Authors

Contributions

H.K. conceived the whole study, designed and performed experiments and wrote the manuscript; N.Y., C.A. and M.U. performed experiments; S.K., N.I., H.T. and E.N. provided reagents and ideas to this work; S.H. provided the initial strategy for phosphoproteomics and advice; all of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hidetaka Kosako.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 3718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosako, H., Yamaguchi, N., Aranami, C. et al. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16, 1026–1035 (2009). https://doi.org/10.1038/nsmb.1656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1656

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing