Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Focal therapy in prostate cancer: modalities, findings and future considerations

Abstract

Focal therapy is emerging as an alternative to active surveillance for the management of low-risk prostate cancer in carefully selected patients. The aim of focal therapy is long-term cancer control without the associated morbidity that plagues all radical therapies. Different energy modalities have been used to focally ablate cancer tissue, and available techniques include cryotherapy, laser ablation, high-intensity focused ultrasound and photodynamic therapy. The majority of evidence for focal therapy has come from case series and small phase I trials, and larger cohort studies with longer follow-up are only now being commenced. More data from large trials on the safety and efficacy of focal therapy are therefore required before this approach can be recommended in men with prostate cancer; in particular, studies must confirm that no viable cells remain in the region of ablation. Focal therapy might eventually prove to be a 'middle ground' between active surveillance and radical treatment, combining minimal morbidity with cancer control and the potential for re-treatment.

Key Points

  • Focal therapy is emerging as an alternative to active surveillance in the management of low-risk, carefully selected patients with prostate cancer

  • Cryotherapy, focal laser ablation, high-intensity focused ultrasound and photodynamic therapy are the modalities currently available to focally ablate any tumor, including prostate cancer

  • MRI is emerging as a key component of the focal ablation technique as it is able to locate the tumor, provide real-time monitoring and confirm tumor ablation

  • Data from large trials on the safety and efficacy of focal therapy are required before this approach can be recommended as an option for men with prostate cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Available ablative modalities for focal therapy of prostate cancer.
Figure 2: Peer-reviewed articles on focal therapy for prostate cancer.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  PubMed  Google Scholar 

  2. Welch, H. G. & Albertsen, P. C. Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J. Natl Cancer Inst. 101, 1325–1329 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shao, Y. H. et al. Contemporary risk profile of prostate cancer in the United States. J. Natl Cancer Inst. 101, 1280–1283 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cooperberg, M. R., Broering, J. M., Kantoff, P. W. & Carroll, P. R. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J. Urol. 178, S14–S19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wei, J. T. et al. Comprehensive comparison of health-related quality of life after contemporary therapies for localized prostate cancer. J. Clin. Oncol. 20, 557–566 (2002).

    Article  PubMed  Google Scholar 

  6. Sanda, M. G. et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N. Engl. J. Med. 358, 1250–1261 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Bill-Axelson, A. et al. Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial. J. Natl Cancer Inst. 100, 1144–1154 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johansson, J. E. et al. Natural history of early, localized prostate cancer. JAMA 291, 2713–2719 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Schroder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    Article  PubMed  Google Scholar 

  10. Choo, R. et al. Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J. Urol. 167, 1664–1669 (2002).

    Article  PubMed  Google Scholar 

  11. Barocas, D. A., Cowan, J. E., Smith, J. A. Jr & Carroll, P. R. What percentage of patients with newly diagnosed carcinoma of the prostate are candidates for surveillance? An analysis of the CaPSURE database. J. Urol. 180, 1330–1334 (2008).

    Article  PubMed  Google Scholar 

  12. Vogl, T. J., Straub, R., Eichler, K., Sollner, O. & Mack, M. G. Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy—local tumor control rate and survival data. Radiology 230, 450–458 (2004).

    Article  PubMed  Google Scholar 

  13. Gough-Palmer, A. L. & Gedroyc, W. M. Laser ablation of hepatocellular carcinoma—a review. World J. Gastroenterol. 14, 7170–7174 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pacella, C. M. et al. Long-term outcome of cirrhotic patients with early hepatocellular carcinoma treated with ultrasound-guided percutaneous laser ablation: a retrospective analysis. J. Clin. Oncol. 27, 2615–2621 (2009).

    Article  PubMed  Google Scholar 

  15. Dick, E. A. et al. Magnetic resonance imaging-guided laser thermal ablation of renal tumours. BJU Int. 90, 814–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohori, M. et al. Is focal therapy reasonable in patients with early stage prostate cancer (CaP)—an analysis of radical prostatectomy (RP) specimens. J. Urol. 175 (Suppl.), 507 (2006).

    Article  Google Scholar 

  18. Ahmed, H. U. The index lesion and the origin of prostate cancer. N. Engl. J. Med. 361, 1704–1706 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Ward, J. F. & Jones, J. S. Classification system: organ preserving treatment for prostate cancer. Urology 75, 1258–1260 (2010).

    Article  PubMed  Google Scholar 

  20. Ward, J. F., Nakanishi, H., Pisters, L., Babaian, R. J. & Troncoso, P. Cancer ablation with regional templates applied to prostatectomy specimens from men who were eligible for focal therapy. BJU Int. 104, 490–497 (2009).

    Article  PubMed  Google Scholar 

  21. Arnott, J. In On the Treatment of Cancer by the Regulated Application of an Anesthetic Temperature, 32–54 (Churchill J, London, 1851).

    Google Scholar 

  22. Soanes, W. A. & Gonder, M. J. Use of cryosurgery in prostatic cancer. J. Urol. 99, 793–797 (1968).

    Article  CAS  PubMed  Google Scholar 

  23. Gonder, M. J., Soanes, W. A. & Shulman, S. Cryosurgical treatment of the prostate. Invest. Urol. 3, 372–378 (1966).

    CAS  PubMed  Google Scholar 

  24. Gonder, M. J., Soanes, W. A. & Smith, V. Experimental prostate cryosurgery. Invest. Urol. 1, 610–619 (1964).

    CAS  PubMed  Google Scholar 

  25. Ritch, C. R. & Katz, A. E. Prostate cryotherapy: current status. Eur. Urol. 19, 22–23 (2001).

    Google Scholar 

  26. Gowardhan, B. & Greene, D. Cryotherapy for the prostate: an in vitro and clinical study of two new developments; advanced cryoneedles and a temperature monitoring system. BJU Int. 100, 295–302 (2007).

    Article  PubMed  Google Scholar 

  27. Onik, G., Narayan, P., Vaughan, D., Dineen, M. & Brunelle, R. Focal “nerve-sparing” cryosurgery for treatment of primary prostate cancer: a new approach to preserving potency. Urology 60, 109–114 (2002).

    Article  PubMed  Google Scholar 

  28. Onik, G. The male lumpectomy: rationale for a cancer targeted approach for prostate cryoablation. A review. Technol. Cancer Res. Treat. 3, 365–370 (2004).

    Article  PubMed  Google Scholar 

  29. Onik, G., Vaughan, D., Lotenfoe, R., Dineen, M. & Brady, J. “Male lumpectomy”: focal therapy for prostate cancer using cryoablation. Urology 70, 16–21 (2007).

    Article  PubMed  Google Scholar 

  30. Ellis, D. S., Manny, T. B. Jr & Rewcastle, J. C. Focal cryosurgery followed by penile rehabilitation as primary treatment for localized prostate cancer: initial results. Urology 70, 9–15 (2007).

    Article  PubMed  Google Scholar 

  31. Steed, J., Saliken, J. C., Donnelly, B. J. & Ali-Ridha, N. H. Correlation between thermosensor temperature and transrectal ultrasonography during prostate cryoablation. Can. Assoc. Radiol. J. 48, 186–190 (1997).

    CAS  PubMed  Google Scholar 

  32. Silverman, S. G. et al. MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology 217, 657–664 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Shingleton, W. B. & Sewell, P. E. Jr. Percutaneous renal tumor cryoablation with magnetic resonance imaging guidance. J. Urol. 165, 773–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Silverman, S. G. et al. Renal tumors: MR imaging-guided percutaneous cryotherapy—initial experience in 23 patients. Radiology 236, 716–724 (2005).

    Article  PubMed  Google Scholar 

  35. Sewell, P. E., Arriola, R. M., Robinette, L. & Cowan, B. D. Real-time I-MR-imaging-guided cryoablation of uterine fibroids. J. Vasc. Interv. Radiol. 12, 891–893 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Dohi, M. et al. MR-guided transvaginal cryotherapy of uterine fibroids with a horizontal open MRI system: initial experience. Radiat. Med. 22, 391–397 (2004).

    PubMed  Google Scholar 

  37. Morin, J. et al. Magnetic resonance-guided percutaneous cryosurgery of breast carcinoma: technique and early clinical results. Can. J. Surg. 47, 347–351 (2004).

    PubMed  PubMed Central  Google Scholar 

  38. Chen, J. et al. Monitoring prostate thermal therapy with diffusion-weighted MRI. Magn. Reson. Med. 59, 1365–1372 (2008).

    Article  PubMed  Google Scholar 

  39. Lambert, E. H., Bolte, K., Masson, P. & Katz, A. E. Focal cryosurgery: encouraging health outcomes for unifocal prostate cancer. Urology 69, 1117–1120 (2007).

    Article  PubMed  Google Scholar 

  40. Guazzoni, G. Investigative study of the role of focal therapy for prostate cancer treatment. http://www.clinicaltrial.gov/ct2/results?term=NCT00928603 (2010).

  41. Pisters, L. L. et al. A feasibility study of cryotherapy followed by radical prostatectomy for locally advanced prostate cancer. J. Urol. 161, 509–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Grampsas, S. A., Miller, G. J. & Crawford, E. D. Salvage radical prostatectomy after failed transperineal cryotherapy: histologic findings from prostate whole-mount specimens correlated with intraoperative transrectal ultrasound images. Urology 45, 936–941 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Bailey, M. R., Khokhlova, V. A., Sapozhnikov, O. A., Kargl, S. G. & Crum, L. A. Physical mechanisms of the therapeutic effect of ultrasound. Acoust. Phys. 49, 369–388 (2008).

    Article  Google Scholar 

  44. Lynn, J. G., Zwemer, R. L. & Chick, A. J. The biological application of focused ultrasonic waves. Science 96, 119–120 (1942).

    Article  CAS  PubMed  Google Scholar 

  45. Meyers, R. et al. Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. J. Neurosurg. 16, 32–54 (1959).

    Article  CAS  PubMed  Google Scholar 

  46. ter Haar, G., Sinnett, D. & Rivens, I. High intensity focused ultrasound—a surgical technique for the treatment of discrete liver tumors. Phys. Med. Biol. 34, 1743–1750 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Bihrle, R., Foster, R. S., Sanghvi, N. T., Donohue, J. P. & Hood, P. J. High intensity focused ultrasound for the treatment of benign prostatic hyperplasia: early United States clinical experience. J. Urol. 151, 1271–1275 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Gelet, A. et al. High-intensity focused ultrasound experimentation on human benign prostatic hypertrophy. Eur. Urol. 23 (Suppl. 1), 44–47 (1993).

    Article  PubMed  Google Scholar 

  49. Madersbacher, S., Pedevilla, M., Vingers, L., Susani, M. & Marberger, M. Effect of high-intensity focused ultrasound on human prostate cancer in vivo. Cancer Res. 55, 3346–3351 (1995).

    CAS  PubMed  Google Scholar 

  50. Beerlage, H. P., Thuroff, S., Debruyne, F. M., Chaussy, C. & de la Rosette, J. J. Transrectal high-intensity focused ultrasound using the Ablatherm device in the treatment of localized prostate carcinoma. Urology 54, 273–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Muto, S. et al. Focal therapy with high-intensity-focused ultrasound in the treatment of localized prostate cancer. Jpn J. Clin. Oncol. 38, 192–199 (2008).

    Article  PubMed  Google Scholar 

  52. de Senneville, B. D., Mougenot, C. & Moonen, C. T. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound. Magn. Reson. Med. 57, 319–330 (2007).

    Article  PubMed  Google Scholar 

  53. de Senneville, B. D. et al. MR thermometry for monitoring tumor ablation. Eur. Radiol. 17, 2401–2410 (2007).

    Article  PubMed  Google Scholar 

  54. Chopra, R. et al. Analysis of the spatial and temporal accuracy of heating in the prostate gland using transurethral ultrasound therapy and active MR temperature feedback. Phys. Med. Biol. 54, 2615–2633 (2009).

    Article  PubMed  Google Scholar 

  55. Emberton, M. High-intensity focused ultrasound therapy in treating patients with localized prostate cancer. http://www.clinicaltrial.gov/ct2/results?term=NCT00561262 (2010).

  56. Emberton, M. High-intensity focused ultrasound ablation in treating patients with localized prostate cancer. http://www.clinicaltrial.gov/ct2/results?term=NCT00561314 (2010).

  57. Ahmed, H. High-intensity focused ultrasound ablation in treating patients with progressive prostate cancer. http://www.clinicaltrial.gov/ct2/results?term=NCT00987675 (2010).

  58. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493 (1960).

    Article  Google Scholar 

  59. McGuff, P. E., Bushnell, D., Soroff, H. S. & Deterling, R. A. Jr. Studies of the surgical applications of laser (light amplification by stimulated emission of radiation). Surg. Forum 14, 143–145 (1963).

    CAS  PubMed  Google Scholar 

  60. Helsper, J. T., Sharp, G. S., Williams, H. F. & Fister, H. W. The biological effect of laser energy on human melanoma. Cancer 17, 1299–1304 (1964).

    Article  CAS  PubMed  Google Scholar 

  61. McGuff, P. E. et al. The laser treatment of experimental malignant tumours. Can. Med. Assoc. J. 91, 1089–1095 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. McGuff, P. E. et al. Laser surgery of malignant tumors. Dis. Chest. 48, 130–139 (1965).

    Article  CAS  PubMed  Google Scholar 

  63. Bergqvist, T., Kleman, B. & Tengroth, B. Laser irradiance levels for retinal lesions. Acta Ophthalmol. (Copenh.) 43, 331–349 (1965).

    Article  CAS  Google Scholar 

  64. Ingram, H. V. The laser ophthalmoscope coagulator. A preliminary report. Trans. Ophthalmol. Soc. UK 84, 453–467 (1964).

    CAS  PubMed  Google Scholar 

  65. Tengroth, B. Laser coagulation risks and advantages. Trans. Ophthalmol. Soc. UK 86, 55–61 (1966).

    CAS  PubMed  Google Scholar 

  66. Costello, A. J., Johnson, D. E. & Bolton, D. M. Nd:YAG laser ablation of the prostate as a treatment for benign prostatic hypertrophy. Lasers Surg. Med. 12, 121–124 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. McNicholas, T. A., Carter, S. S., Wickham, J. E. & O'Donoghue, E. P. YAG laser treatment of early carcinoma of the prostate. Br. J. Urol. 61, 239–243 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Lindner, U. et al. Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur. Urol. 57, 1111–1114 (2010).

    Article  PubMed  Google Scholar 

  69. Lindner, U. et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J. Urol. 182, 1371–1377 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Raz, O. et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur. Urol. 58, 172–177 (2010).

    Google Scholar 

  71. Bown, S. G. Phototherapy in tumors. World J. Surg. 7, 700–709 (1983).

    Article  CAS  PubMed  Google Scholar 

  72. Beisland, H. O. & Stranden, E. Rectal temperature monitoring during neodymion-YAG laser irradiation for prostatic carcinoma. Urol. Res. 12, 257–259 (1984).

    Article  CAS  PubMed  Google Scholar 

  73. Amin, Z., Lees, W. R. & Bown, S. G. Technical note: interstitial laser photocoagulation for the treatment of prostatic cancer. Br. J. Radiol. 66, 1044–1047 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Garcea, G., Lloyd, T. D., Aylott, C., Maddern, G. & Berry, D. P. The emergent role of focal liver ablation techniques in the treatment of primary and secondary liver tumors. Eur. J. Cancer 39, 2150–2164 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Schefler, A. C., Cicciarelli, N., Feuer, W., Toledano, S. & Murray, T. G. Macular retinoblastoma: evaluation of tumor control, local complications, and visual outcomes for eyes treated with chemotherapy and repetitive foveal laser ablation. Ophthalmology 114, 162–169 (2007).

    Article  PubMed  Google Scholar 

  76. Raz, O. et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur. Urol. doi:10.1016/j.eururo.2010.03.006.

    Article  PubMed  Google Scholar 

  77. Saks, N. M., Zuzolo, R. C. & Kopac, M. J. Microsurgery of living cells by ruby laser irradiation. Ann. NY Acad. Sci. 122, 695–712 (1965).

    Article  CAS  PubMed  Google Scholar 

  78. Schwarzmaier, H. J. et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur. J. Radiol. 59, 208–215 (2006).

    Article  PubMed  Google Scholar 

  79. Streitparth, F. et al. MR-guided laser ablation of osteoid osteoma in an open high-field system (1.0 T). Cardiovasc. Intervent. Radiol. 32, 320–325 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Trachtenberg, J. MRI targeted focal laser thermal therapy of prostate cancer (FLTT 002). http://www.clinicaltrial.gov/ct2/results?term=NCT01094665 (2010).

  81. Taneja, S. Study using WST11 in patients with localized prostate cancer. http://www.clinicaltrial.gov/ct2/results?term=NCT00946881 (2010).

  82. ter Haar, G. & Warin, A. P. Photochemotherapy in psoriasis: a review. Phys. Med. 34, 440–446 (1989).

    Google Scholar 

  83. Kelly, J. F., Snell, M. E. & Berenbaum, M. C. Photodynamic destruction of human bladder carcinoma. Br. J. Cancer 31, 237–244 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Windahl, T., Pedevilla, M. & Vingers, L. Photodynamic therapy of localised prostatic cancer. Lancet 55, 1139 (1995).

    Google Scholar 

  85. Madersbacher, S., Pedevilla, M., Hoppner, M. & Marberger, M. Photodynamic therapy of prostate cancer in vivo. Urol. Int. 55, 3346–3351 (1995).

    CAS  Google Scholar 

  86. Trachtenberg, J. et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int. 102, 556–562 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Nathan, T. R. et al. Photodynamic therapy for prostate cancer recurrence after radiotherapy: a phase I study. J. Urol. 168, 1427–1432 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Verigos, K. et al. Updated results of a phase I trial of motexafin lutetium-mediated interstitial photodynamic therapy in patients with locally recurrent prostate cancer. J. Environ. Pathol.Toxicol. Oncol. 25, 373–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Zaak, D. et al. Photodynamic therapy of prostate cancer by means of 5-aminolevulinic acid-induced protoporphyrin IX—in vivo experiments on the dunning rat tumor model. Urol. Int. 72, 196–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Arumainayagam, N., Moore, C. M., Ahmed, H. U. & Emberton, M. Photodynamic therapy for focal ablation of the prostate. World J. Urol. doi:10.1007/s00345-010-0554-2.

    Article  PubMed  Google Scholar 

  91. Berdugo, M. et al. Evaluation of the new photosensitizer Stakel (WST-11) for photodynamic choroidal vessel occlusion in rabbit and rat eyes. Invest. Ophthalmol. Vis. Sci. 49, 1633–1644 (2008).

    Article  PubMed  Google Scholar 

  92. Liu, T., Wu, L. Y., Choi, J. K. & Berkman, C. E. In vitro targeted photodynamic therapy with a pyropheophorbide—a conjugated inhibitor of prostate-specific membrane antigen. Prostate 69, 585–594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Davidson, S. R. et al. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer. Phys. Med. Biol. 54, 2293–2313 (2009).

    Article  PubMed  Google Scholar 

  94. Meyer-Betz, F. Untersuchungen uber die biologische photodynamische wirkung des hematoporphyrins und anderer derivative des blut und galenafarbstoffs. BJU Int. 95, 476–503 (1913).

    Google Scholar 

  95. Huang, Z. et al. Magnetic resonance imaging correlated with the histopathological effect of Pd-bacteriopheophorbide (Tookad) photodynamic therapy on the normal canine prostate gland. Lasers Surg. Med. 38, 672–681 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Haider, M. A. et al. Prostate gland: MR imaging appearance after vascular targeted photodynamic therapy with palladium-bacteriopheophorbide. Radiology 244, 196–204 (2007).

    Article  PubMed  Google Scholar 

  97. Fei, B., Wang, H., Wu, C. & Chiu, S. M. Choline PET for monitoring early tumor response to photodynamic therapy. J. Nucl. Med. 51, 130–138.

  98. Turkbey, B., Pinto, P. A. & Choyke, P. L. Imaging techniques for prostate cancer: implications for focal therapy. Nat. Rev. Urol. 6, 191–203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Haider, M. A. et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am. J. Roentgenol. 189, 323–328 (2007).

    Article  PubMed  Google Scholar 

  100. Kitajima, K. et al. Prostate cancer detection with 3 T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J. Magn. Reson. Imaging 31, 625–631 (2010).

    Article  PubMed  Google Scholar 

  101. Zhang, J. et al. Clinical stage T1c prostate cancer: evaluation with endorectal MR imaging and MR spectroscopic imaging. Radiology 253, 425–434 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Langer, D. L. et al. Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J. Magn. Reson. Imaging 30, 327–334 (2009).

    Article  PubMed  Google Scholar 

  103. Zakian, K. L. et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234, 804–814 (2005).

    Article  PubMed  Google Scholar 

  104. Groenendaal, G. et al. Validation of functional imaging with pathology for tumor delineation in the prostate. Radiother. Oncol. 94, 145–150 (2010).

    Article  PubMed  Google Scholar 

  105. Chen, J. C. et al. Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology 214, 290–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Larson, B. T. et al. Gadolinium-enhanced MRI in the evaluation of minimally invasive treatments of the prostate: correlation with histopathologic findings. Urology 62, 900–904 (2003).

    Article  PubMed  Google Scholar 

  107. Turkbey, B. et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology 255, 89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Iczkowski, K. A. et al. Preoperative prediction of unifocal, unilateral, margin-negative, and small volume prostate cancer. Urology 71, 1166–1171 (2008).

    Article  PubMed  Google Scholar 

  109. Noguchi, M., Stamey, T. A., McNeal, J. E. & Nolley, R. Prognostic factors for multifocal prostate cancer in radical prostatectomy specimens: lack of significance of secondary cancers. J. Urol. 170, 459–463 (2003).

    Article  PubMed  Google Scholar 

  110. Jones, J. S. Focal or subtotal therapy for early stage prostate cancer. Curr. Treat. Options Oncol. 8, 165–172 (2007).

    Article  PubMed  Google Scholar 

  111. Epstein, J. I., Walsh, P. C., Carmichael, M. & Brendler, C. B. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271, 368–374 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. D'Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Koksal, I. T. et al. Discrepancy between Gleason scores of biopsy and radical prostatectomy specimens. Eur. Urol. 37, 670–674 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Barzell, W. E. & Melamed, M. R. Appropriate patient selection in the focal treatment of prostate cancer: the role of transperineal 3-dimensional pathologic mapping of the prostate—a 4-year experience. Urology 70, 27–35 (2007).

    Article  PubMed  Google Scholar 

  115. Quann, P., Jarrard, D. F. & Huang, W. Current prostate biopsy protocols cannot reliably identify patients for focal therapy: correlation of low-risk prostate cancer on biopsy with radical prostatectomy findings. Int. J. Clin. Exp. Pathol. 3, 401–407 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sartor, A. O. et al. Evaluating localized prostate cancer and identifying candidates for focal therapy. Urology 72, S12–S24 (2008).

    Article  PubMed  Google Scholar 

  117. Ahmed, H. U. et al. Will focal therapy become a standard of care for men with localized prostate cancer? Nat. Clin. Pract. Oncol. 4, 632–642 (2007).

    Article  PubMed  Google Scholar 

  118. Bostwick, D. G. et al. Group consensus reports from the consensus conference on focal treatment of prostatic carcinoma, Celebration, Florida, February 24, 2006. Urology 70, 42–44 (2007).

    Article  PubMed  Google Scholar 

  119. Stamey, T. A., McNeal, J. M., Wise, A. M. & Clayton, J. L. Secondary cancers in the prostate do not determine PSA biochemical failure in untreated men undergoing radical retropubic prostatectomy. Eur. Urol. 39 (Suppl. 4), 22–23 (2001).

    Article  PubMed  Google Scholar 

  120. Karavitakis, M. et al. Histological characteristics of the index lesion in whole-mount radical prostatectomy specimens: implications for focal therapy. Prostate Cancer Prostatic Dis. doi:10.1038/pcan.2010.16.

    Article  PubMed  Google Scholar 

  121. Aihara, M., Wheeler, T. M., Ohori, M. & Scardino, P. T. Heterogeneity of prostate cancer in radical prostatectomy specimens. Urology 43, 60–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  122. Cheng, L. et al. Evidence of independent origin of multiple tumors from patients with prostate cancer. J. Natl Cancer Inst. 90, 233–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Bahn, D. K. et al. Focal prostate cryoablation: initial results show cancer control and potency preservation. J. Endourol. 20, 688–692 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Janice Yau, a student from the Division of Biomedical Communications, University of Toronto, Canada, for creating the original artwork used as the basis for Figure 1.

Author information

Authors and Affiliations

Authors

Contributions

All three authors researched data for this article and contributed to discussion regarding the article content. The article was written by U. Lindner and N. Lawrentschuk and was reviewed and edited by T. Trachtenburg and N. Lawrentschuk before submission.

Corresponding author

Correspondence to Nathan Lawrentschuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, U., Trachtenberg, J. & Lawrentschuk, N. Focal therapy in prostate cancer: modalities, findings and future considerations. Nat Rev Urol 7, 562–571 (2010). https://doi.org/10.1038/nrurol.2010.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.142

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer