Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of microparticles in the pathogenesis of rheumatic diseases

Abstract

Microparticles (MPs) are small membrane-bound vesicles that are emerging as important elements in the pathogenesis of rheumatic diseases owing to their pleiotropic effects on thrombosis, vascular reactivity, angiogenesis and inflammation. Released from cells during activation and apoptosis, MPs carry proteins, lipids and nucleic acids, and serve as platforms for enzymatic processes in thrombosis. Furthermore, MPs can transfer cytokines, receptors, RNA and DNA to modulate the properties of target cells. As MPs appear in the blood in increased numbers during rheumatic disease, they represent novel biomarkers that can be used to assess events in otherwise inaccessible tissues. Future research will define further the pathogenetic role of MPs and explore therapeutic strategies to block their release or signaling properties.

Key Points

  • Microparticles (MPs) are membrane-bound vesicles that are released from cells during cell activation and apoptosis

  • Depending on the cellular origin and the process of their release, MPs can promote hemostasis, vascular reactivity, angiogenesis and immunity

  • Levels of MPs are increased in the blood of patients with rheumatic diseases, suggesting an important role in disease pathogenesis

  • Circulating MPs represent novel biomarkers for otherwise inaccessible tissues (e.g. endothelium)

  • To establish MPs as biomarkers in rheumatic diseases, future studies need to standardize techniques for isolation and quantification

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The formation and release of MPs, exosomes and apoptotic bodies.
Figure 2: Mechanisms of immune modulation by MPs.
Figure 3: The many roles of MPs in the pathogenesis of rheumatic diseases.

Similar content being viewed by others

References

  1. Ardoin, S. P., Shanahan, J. C. & Pisetsky, D. S. The role of microparticles in inflammation and thrombosis. Scand. J. Immunol. 66, 159–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hugel, B., Martinez, M. C., Kunzelmann, C. & Freyssinet, J. M. Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20, 22–27 (2005).

    CAS  Google Scholar 

  3. Distler, J. H. et al. Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum. 52, 3337–3348 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Cocucci, E., Racchetti, G. & Meldolesi, J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Belting, M. & Wittrup, A. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J. Cell Biol. 183, 1187–1191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hristov, M., Erl, W., Linder, S. & Weber, P. C. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104, 2761–2766 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi, T., Okamoto, H., Yamada, J., Setaka, M. & Kwan, T. Vesiculation of platelet plasma membranes. Dilauroylglycerophosphocholine-induced shedding of a platelet plasma membrane fraction enriched in acetylcholinesterase activity. Biochim. Biophys. Acta 778, 210–218 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Fox, J. E., Austin, C. D., Boyles, J. K. & Steffen, P. K. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J. Cell Biol. 111, 483–493 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Piccin, A., Murphy, W. G. & Smith, O. P. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 21, 157–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. McLaughlin, P. J., Gooch, J. T., Mannherz, H. G. & Weeds, A. G. Structure of gelsolin segment 1–actin complex and the mechanism of filament severing. Nature 364, 685–692 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Connor, J., Pak, C. H., Zwaal, R. F. & Schroit, A. J. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process. J. Biol. Chem. 267, 19412–19417 (1992).

    CAS  PubMed  Google Scholar 

  13. Diaz, C. & Schroit, A. J. Role of translocases in the generation of phosphatidylserine asymmetry. J. Membr. Biol. 151, 1–9 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Bevers, E. M., Comfurius, P., van Rijn, J. L., Hemker, H. C. & Zwaal, R. F. Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur. J. Biochem. 122, 429–436 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Rosing, J., Speijer, H. & Zwaal, R. F. Prothrombin activation on phospholipid membranes with positive electrostatic potential. Biochemistry 27, 8–11 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. van Dieijen, G., Tans, G., Rosing, J. & Hemker, H. C. The role of phospholipid and factor VIIIa in the activation of bovine factor X. J. Biol. Chem. 256, 3433–3442 (1981).

    CAS  PubMed  Google Scholar 

  17. Zwaal, R. F. & Bevers, E. M. Platelet phospholipid asymmetry and its significance in hemostasis. Subcell. Biochem. 9, 299–334 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Schroit, A. J., Tanaka, Y., Madsen, J. & Fidler, I. J. The recognition of red blood cells by macrophages: role of phosphatidylserine and possible implications of membrane phospholipid asymmetry. Biol. Cell 51, 227–238 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Beleznay, Z., Zachowski, A., Devaux, P. F., Navazo, M. P. & Ott, P. ATP-dependent aminophospholipid translocation in erythrocyte vesicles: stoichiometry of transport. Biochemistry 32, 3146–3152 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Zwaal, R. F., Comfurius, P. & Bevers, E. M. Mechanism and function of changes in membrane-phospholipid asymmetry in platelets and erythrocytes. Biochem. Soc. Trans. 21, 248–253 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Horstman, L. L., Jy, W., Jimenez, J. J., Bidot, C. & Ahn, Y. S. New horizons in the analysis of circulating cell-derived microparticles. Keio J. Med. 53, 210–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Jimenez, J. J. et al. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br. J. Haematol. 123, 896–902 (2003).

    Article  PubMed  Google Scholar 

  23. Moskovich, O. & Fishelson, Z. Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J. Biol. Chem. 282, 29977–29986 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Del Conde, I., Shrimpton, C. N., Thiagarajan, P. & Lopez, J. A. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106, 1604–1611 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Miguet, L. et al. Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics 6, 153–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Peterson, D. B. et al. Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. Proteomics 8, 2430–2446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reich, C. F. 3rd & Pisetsky, D. S. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Exp. Cell Res. 315, 760–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hasselmann, D. O., Rappl, G., Tilgen, W. & Reinhold, U. Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin. Chem. 47, 1488–1489 (2001).

    CAS  PubMed  Google Scholar 

  29. Dachary-Prigent, J. et al. Aminophospholipid exposure, microvesiculation and abnormal protein tyrosine phosphorylation in the platelets of a patient with Scott syndrome: a study using physiologic agonists and local anaesthetics. Br. J. Haematol. 99, 959–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Toti, F., Satta, N., Fressinaud, E., Meyer, D. & Freyssinet, J. M. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 87, 1409–1415 (1996).

    CAS  PubMed  Google Scholar 

  31. Zwaal, R. F., Comfurius, P. & Bevers, E. M. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids. Biochim. Biophys. Acta 1636, 119–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Hrachovinova, I. et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat. Med. 9, 1020–1025 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Proulle, V. et al. Circulating microparticles are elevated in haemophiliacs and non-haemophilic individuals aged <18 years. Br. J. Haematol. 131, 487–489 (2005).

    Article  PubMed  Google Scholar 

  34. Lazarus, A. H. et al. Comparison of platelet immunity in patients with SLE and with ITP. Transfus. Sci. 22, 19–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Warren, B. A. & Vales, O. The release of vesicles from platelets following adhesion to vessel walls in vitro. Br. J. Exp. Pathol. 53, 206–215 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Michelson, A. D., Rajasekhar, D., Bednarek, F. J. & Barnard, M. R. Platelet and platelet-derived microparticle surface factor V/Va binding in whole blood: differences between neonates and adults. Thromb. Haemost. 84, 689–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Muller, I. et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J. 17, 476–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Scholz, T., Temmler, U., Krause, S., Heptinstall, S. & Losche, W. Transfer of tissue factor from platelets to monocytes: role of platelet-derived microvesicles and CD62P. Thromb. Haemost. 88, 1033–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Siddiqui, F. A., Desai, H., Amirkhosravi, A., Amaya, M. & Francis, J. L. The presence and release of tissue factor from human platelets. Platelets 13, 247–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Zillmann, A. et al. Platelet-associated tissue factor contributes to the collagen-triggered activation of blood coagulation. Biochem. Biophys. Res. Commun. 281, 603–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Jy, W. et al. Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation. J. Thromb. Haemost. 3, 1301–1308 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Dignat-George, F. et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb. Haemost. 91, 667–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Jy, W. et al. Platelet activation rather than endothelial injury identifies risk of thrombosis in subjects positive for antiphospholipid antibodies. Thromb. Res. 121, 319–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Nagahama, M. et al. Significance of anti-oxidized LDL antibody and monocyte-derived microparticles in anti-phospholipid antibody syndrome. Autoimmunity 36, 125–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Pereira, J. et al. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb. Haemost. 95, 94–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Nomura, S. et al. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 158, 277–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Joseph, J. E., Harrison, P., Mackie, I. J., Isenberg, D. A. & Machin, S. J. Increased circulating platelet–leucocyte complexes and platelet activation in patients with antiphospholipid syndrome, systemic lupus erythematosus and rheumatoid arthritis. Br. J. Haematol. 115, 451–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Nagahama, M. et al. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. Autoimmunity 33, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Knijff-Dutmer, E. A., Koerts, J., Nieuwland, R., Kalsbeek-Batenburg, E. M. & van de Laar, M. A. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 46, 1498–1503 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Barry, O. P., Pratico, D., Lawson, J. A. & FitzGerald, G. A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J. Clin. Invest. 99, 2118–2127 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barry, O. P., Pratico, D., Savani, R. C. & FitzGerald, G. A. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J. Clin. Invest. 102, 136–144 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pfister, S. L. Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension 43, 428–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Brodsky, S. V., Zhang, F., Nasjletti, A. & Goligorsky, M. S. Endothelium-derived microparticles impair endothelial function in vitro. Am. J. Physiol. Heart Circ. Physiol. 286, H1910–H1915 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Tesse, A. et al. Upregulation of proinflammatory proteins through NF-κB pathway by shed membrane microparticles results in vascular hyporeactivity. Arterioscler. Thromb. Vasc. Biol. 25, 2522–2527 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Tesse, A. et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, prevents microparticle-induced vascular hyporeactivity through the regulation of proinflammatory proteins. J. Pharmacol. Exp. Ther. 324, 539–547 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Brill, A., Dashevsky, O., Rivo, J., Gozal, Y. & Varon, D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc. Res. 67, 30–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Ettelaie, C., Su, S., Li, C. & Collier, M. E. Tissue factor-containing microparticles released from mesangial cells in response to high glucose and AGE induce tube formation in microvascular cells. Microvasc. Res. 76, 152–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Soleti, R. et al. Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis 30, 580–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Brogan, P. A. & Dillon, M. J. Endothelial microparticles and the diagnosis of the vasculitides. Intern. Med. 43, 1115–1119 (2004).

    Article  PubMed  Google Scholar 

  60. Daniel, L. et al. Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int. 69, 1416–1423 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Erdbruegger, U. et al. Diagnostic role of endothelial microparticles in vasculitis. Rheumatology (Oxford) 47, 1820–1825 (2008).

    Article  CAS  Google Scholar 

  62. Bakouboula, B. et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 177, 536–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Amabile, N. et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 177, 1268–1275 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Guiducci, S. et al. The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis. Arthritis Rheum. 58, 2845–2853 (2008).

    Article  PubMed  Google Scholar 

  65. Nomura, S., Inami, N., Ozaki, Y., Kagawa, H. & Fukuhara, S. Significance of microparticles in progressive systemic sclerosis with interstitial pneumonia. Platelets 19, 192–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Beyer, C., Schett, G., Gay, S., Distler, O. & Distler, J. H. Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res. Ther. 11, 220 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gasser, O. et al. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell Res. 285, 243–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hess, C., Sadallah, S., Hefti, A., Landmann, R. & Schifferli, J. A. Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163, 4564–4573 (1999).

    CAS  PubMed  Google Scholar 

  69. Nauta, A. J. et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur. J. Immunol. 32, 1726–1736 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Gasser, O. & Schifferli, J. A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104, 2543–2548 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. MacKenzie, A. et al. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 15, 825–835 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Mesri, M. & Altieri, D. C. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J. Biol. Chem. 274, 23111–23118 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Mack, M. et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat. Med. 6, 769–775 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Rozmyslowicz, T. et al. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17, 33–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Forlow, S. B., McEver, R. P. & Nollert, M. U. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 95, 1317–1323 (2000).

    CAS  PubMed  Google Scholar 

  76. Baj-Krzyworzeka, M. et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp. Hematol. 30, 450–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Billy, D., Speijer, H., Zwaal, R. F., Hack, E. C. & Hermens, W. T. Anticoagulant and membrane-degrading effects of secretory (non-pancreatic) phospholipase A2 are inhibited in plasma. Thromb. Haemost. 87, 978–984 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Fourcade, O. et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 80, 919–927 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Jungel, A. et al. Microparticles stimulate the synthesis of prostaglandin E(2) via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum. 56, 3564–3574 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Tabibzadeh, S. S., Kong, Q. F. & Kapur, S. Passive acquisition of leukocyte proteins is associated with changes in phosphorylation of cellular proteins and cell-cell adhesion properties. Am. J. Pathol. 145, 930–940 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Distler, J. H. et al. The release of microparticles by apoptotic cells and their effects on macrophages. Apoptosis 10, 731–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Jodo, S. et al. Apoptosis-inducing membrane vesicles. A novel agent with unique properties. J. Biol. Chem. 276, 39938–39944 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Albanese, J. et al. Biologically active Fas antigen and its cognate ligand are expressed on plasma membrane-derived extracellular vesicles. Blood 91, 3862–3874 (1998).

    CAS  PubMed  Google Scholar 

  84. Abrahams, V. M., Straszewski-Chavez, S. L., Guller, S. & Mor, G. First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol. Hum. Reprod. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Taylor, D. D. & Gercel-Taylor, C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92, 305–311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Whitecar, P. W., Boggess, K. A., McMahon, M. J., Thorp, J. M., Jr & Taylor, D. D. Altered expression of TCR-CD3zeta induced by sera from women with preeclampsia. Am. J. Obstet. Gynecol. 185, 812–818 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Amirkhosravi, A. et al. Platelet microparticles carry CD40 ligand and up-regulate TF and VEGF in endothelial and melanoma cells: possible role in angiogenesis and metastasis. J. Thromb. Haemost. 1 (Suppl. 1), P0822 (2003).

    Article  Google Scholar 

  88. Taraboletti, G. et al. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am. J. Pathol. 160, 673–680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ginestra, A. et al. The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res. 18, 3433–3437 (1998).

    CAS  PubMed  Google Scholar 

  90. Berckmans, R. J. et al. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res. Ther. 7, R536–R544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Berckmans, R. J. et al. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum. 46, 2857–2866 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Biro, E. et al. Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann. Rheum. Dis. 66, 1085–1092 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Messer, L. et al. Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res. Ther. 11, R40 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Distler, J. H. et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc. Natl Acad. Sci. USA 102, 2892–2897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Combes, V. et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J. Clin. Invest. 104, 93–102 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Umekita, K. et al. Leukocytapheresis (LCAP) decreases the level of platelet-derived microparticles (MPs) and increases the level of granulocytes-derived MPs: a possible connection with the effect of LCAP on rheumatoid arthritis. Mod. Rheumatol. 19, 265–272 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Pisetsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, C., Pisetsky, D. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 6, 21–29 (2010). https://doi.org/10.1038/nrrheum.2009.229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing