Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Malignancy after renal transplantation: the role of immunosuppression

Abstract

Outcomes of kidney transplantation, in terms of graft and patient survival, have improved over the past few decades, partly as a result of the introduction of new immunosuppressive drugs. Many immunosuppressive agents are associated with an increased risk of cardiovascular events and an increased risk of cancer, however, which can compromise patient survival. Cancer is more common among solid-organ transplant recipients than it is in the general population or in patients on dialysis. In fact, malignancy is the third most common cause of death in renal transplant recipients. Immunosuppressive treatments used in renal transplant recipients can cause malignancy by supporting oncogenesis caused by certain viruses or by impairing immune surveillance thereby enabling faster tumor growth. In this Review, we describe the epidemiological and clinical characteristics of common tumor types occurring after kidney transplantation, and the etiopathogenetic factors that lead to their appearance, with a particular focus on the relationship between immunosuppressive treatment and malignancy. Immunosuppressive drugs associated with an increased risk of malignancy after transplantation are also discussed, as are immunosuppressive drugs that seem to have antioncogenic properties.

Key Points

  • Malignancy is the third most common cause of death after renal transplantation

  • Common malignancies in renal transplant recipients include skin cancer, melanoma, Kaposi's sarcoma and post-transplantation lymphoproliferative disorders

  • Factors associated with the development of cancer in transplant recipients include carcinogenic factors, impaired immune surveillance owing to immunosuppression, a genetic predisposition to cancer and the presence of certain viral infections

  • Renal transplant recipients should be screened for cancer regularly after transplantation to enable early intervention when necessary

  • Immunosuppressive treatments in renal transplant recipients should be modulated to try and balance the risks of graft rejection and cancer development

  • Malignancies should be managed with specific therapies for the particular tumor type and with strategies such as immunosuppression reduction, immunosuppression withdrawal or conversion to alternative immunosuppressive regimens

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors associated with the development of cancer in renal transplant recipients.

Similar content being viewed by others

References

  1. Schnuelle, P., Lorenz, D., Trede, M. & Van Der Woude, F. J. Impact of renal cadaveric transplantation on survival in end-stage renal failure: evidence for reduced mortality risk compared with hemodialysis during long-term follow-up. J. Am. Soc. Nephrol. 9, 2135–2141 (1998).

    CAS  PubMed  Google Scholar 

  2. Port, F. K., Wolfe, R. A., Mauger, E. A., Berling, D. P. & Jiang, K. Comparison of survival probabilities for dialysis patients vs cadaveric renal transplant recipients. JAMA 270, 1339–1343 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Wolfe, R. A. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Meier-Kriesche, H. U. et al. Survival improvement among patients with end-stage renal disease: trends over time for transplant recipients and wait-listed patients. J. Am. Soc. Nephrol. 12, 1293–1296 (2001).

    CAS  PubMed  Google Scholar 

  5. Oniscu, G. C., Brown, H. & Forsythe, J. L. Impact of cadaveric renal transplantation on survival in patients listed for transplantation. J. Am. Soc. Nephrol. 16, 1859–1865 (2005).

    Article  PubMed  Google Scholar 

  6. Ojo, A. O. et al. Comparative mortality risks of chronic dialysis and cadaveric transplantation in black end-stage renal disease patients. Am. J. Kidney Dis. 24, 59–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Gill, J. S. et al. The impact of waiting time and comorbid conditions on the survival benefit of kidney transplantation. Kidney Int. 68, 2345–2351 (2005).

    Article  PubMed  Google Scholar 

  8. O'Grady, J. G., Burroughs, A., Hardy, P., Elbourne, D. & Truesdale, A. Tacrolimus versus microemulsified ciclosporin in liver transplantation: the TMC randomized controlled trial. Lancet 360, 1119–1125 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Knight, S. R. et al. Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation 87, 785–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Opelz, G. & Henderson, R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet 342, 1514–1516 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Howard, R. J. et al. The changing causes of graft loss and death after kidney transplantation. Transplantation 73, 1923–1928 (2002).

    Article  PubMed  Google Scholar 

  12. Collins, A. J. et al. Excerpts from the United States Renal Data System 2003 Annual Data Report: atlas of end-stage renal disease in the United States. Am. J. Kidney Dis. 42 (Suppl. 5), S1–S230 (2003).

    Google Scholar 

  13. Briggs, J. D. Causes of death after renal transplantation. Nephrol. Dial. Transplant. 16, 1545–1549 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Wimmer, C. D. et al. The janus face of immunosuppression—de novo malignancy after renal transplantation: the experience of the Transplantation Center Munich. Kidney Int. 71, 1271–1278 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Penn, I. Malignant melanoma in organ allograft recipients. Transplantation 61, 274–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Birkeland, S. A., Lokkegaard, H. & Storm, H. H. Cancer risk in patients on dialysis and after renal transplantation. Lancet 355, 1886–1887 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Adami, J. et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br. J. Cancer 89, 1221–1227 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kasiske, B. L., Snyder, J. J., Gilbertson, D. T. & Wang, C. Cancer after kidney transplantation in the United States. Am. J. Transplant. 4, 905–913 (2004).

    Article  PubMed  Google Scholar 

  19. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    Article  PubMed  Google Scholar 

  20. Visonneau, S., Cesano, A., Torosian, M. H., Miller, E. J. & Santoli, D. Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. Am. J. Pathol. 152, 1299–1311 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stewart, T., Tsai, S. C., Grayson, H., Henderson, R. & Opelz, G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346, 796–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Mihalov, M. L., Gattuso. P., Abraham, K., Holmes, E. W. & Reddy, V. Incidence of post-transplant malignancy among 674 solid-organ-transplant recipients at a single center. Clin. Transplant. 10, 248–255 (1996).

    CAS  PubMed  Google Scholar 

  23. Jensen, P. et al. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J. Am. Acad. Dermatol. 40, 177–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Fortina, A. B. et al. Skin cancer in heart transplant recipients: frequency and risk factor analysis. J. Heart Lung Transplant. 19, 249–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Penn, I. Incidence and treatment of neoplasia after transplantation. J. Heart Lung Transplant. 12, S328–S336 (1993).

    CAS  PubMed  Google Scholar 

  26. Kiberd, B. A., Rose, C. & Gill, J. S. Cancer mortality in kidney transplant recipients. Am. J. Transplant. 9, 1868–1875 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Pedotti, P., Cardillo, M., Rossini, G. & Arcuri, V. Incidence of cancer after kidney transplant: results from the North Italy transplant program. Transplantation 76, 1448–1451 (2003).

    Article  PubMed  Google Scholar 

  28. Miao, Y. et al. De novo cancers arising in organ transplant recipients are associated with adverse outcomes compared with the general population. Transplantation 87, 1347–1359 (2009).

    Article  PubMed  Google Scholar 

  29. de Fijter, J. W. Use of proliferation signal inhibitors in non-melanoma skin cancer following renal transplantation. Nephrol. Dial. Transplant. 22 (Suppl. 1), i23–i26 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Webb, M. C., Compton, F., Andrews, P. A. & Koffman, C. G. Skin tumours posttransplantation: a retrospective analysis of 28 years' experience at a single centre. Transplant. Proc. 29, 828–830 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Euvrard, S. et al. Comparative epidemiologic study of premalignant and malignant epithelial cutaneous lesions developing after kidney and heart transplantation. J. Am. Acad. Dermatol. 33, 222–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Christenson, L. J. et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA 294, 681–690 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Urwin, H. R. et al. Predicting risk of nonmelanoma skin cancer and premalignant skin lesions in renal transplant recipients. Transplantation 87, 1667–1671 (2009).

    Article  PubMed  Google Scholar 

  34. Vajdic, C. M. et al. Cutaneous melanoma is related to immune suppression in kidney transplant recipients. Cancer Epidemiol. Biomarkers Prev. 18, 2297–2303 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Dapprich, D. C. et al. Outcomes of melanoma in recipients of solid organ transplant. J. Am. Acad. Dermatol. 59, 405–417 (2008).

    Article  PubMed  Google Scholar 

  36. Matin, R. N. et al. Melanoma in organ transplant recipients: clinicopathological features and outcome in 100 cases. Am. J. Transplant. 8, 1891–1900 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Campistol, J. M. & Schena, F. P. Kaposi's sarcoma in renal transplant recipients—the impact of proliferation signal inhibitors. Nephrol. Dial. Transplant. 22 (Suppl. 1), i17–i22 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Moosa, M. R. Racial and ethnic variations in incidence and pattern of malignancies after kidney transplantation. Medicine 84, 12–22 (2005).

    Article  PubMed  Google Scholar 

  39. Francès, C. et al. The impact of preexisting or acquired Kaposi sarcoma herpesvirus infection in kidney transplant recipients on morbidity and survival. Am. J. Transplant. 9, 2580–2586 (2009).

    Article  PubMed  Google Scholar 

  40. Pascual, J. Post-transplant lymphoproliferative disorder—the potential of proliferation signal inhibitors. Nephrol. Dial. Transplant. 22 (Suppl. 1), i27–i35 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Caillard, S., Agodoa, L. Y., Bohen, E. M. & Abbott, K. C. Myeloma, Hodgkin disease, and lymphoid leukemia after renal transplantation: characteristics, risk factors and prognosis. Transplantation 81, 888–895 (2006).

    Article  PubMed  Google Scholar 

  42. Koukourgianni, F. et al. Malignancy incidence after renal transplantation in children: a 20-year single centre experience. Nephrol. Dial. Transplant. 25, 611–616 (2010).

    Article  PubMed  Google Scholar 

  43. Berg, D. & Otley, C. C. Skin cancer in organ transplant recipients: epidemiology, pathogenesis, and management. Am. Acad. Dermatol. 47, 1–17 (2002).

    Article  Google Scholar 

  44. Penn, I. & First, M. R. Merkel's cell carcinoma in organ recipients: report of 41 cases. Transplantation 68, 1717–1721 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Vajdic, C. M. et al. Increased incidence of squamous cell carcinoma of eye after kidney transplantation. J. Natl Cancer Inst. 99, 1340–1342 (2007).

    Article  PubMed  Google Scholar 

  46. Penn, I. Cancers complicating organ transplantation. N. Engl. J. Med. 323, 1767–1769 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Penn, I. Cancers of the anogenital region in renal transplant recipients. Analysis of 65 cases. Cancer 58, 611–616 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Anyanwu, A. C. et al. Primary lung carcinoma after heart or lung transplantation: management and outcome. J. Thorac. Cardiovasc. Surg. 124, 1190–1197 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Rinaldi, M. et al. Neoplastic disease after heart transplantation: single center experience. Eur. J. Cardiothorac. Surg. 19, 696–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Goldstein, D. J. et al. Carcinoma of the lung after heart transplantation. Transplantation 62, 772–775 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Buell, J. F. et al. Donor transmitted malignancies. Ann. Transplant. 9, 53–56 (2004).

    PubMed  Google Scholar 

  52. Kauffman, H. M., McBride, M. A. & Delmonico, F. L. First report of the United Network for Organ Sharing Transplant Tumor Registry: Donors with a history of cancer. Transplantation 70, 1747–1751 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Morath, C. et al. Malignancy in renal transplantation. J. Am. Soc. Nephrol. 15, 1582–1588 (2004).

    Article  PubMed  Google Scholar 

  54. Ramsay, H. M., Fryer, A. A., Reece, S., Smith, A. G. & Harden, P. N. Clinical risk factors associated with nonmelanoma skin cancer in renal transplant recipients. Am. J. Kidney Dis. 36, 167–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Fortina, A. B. et al. Immunosuppressive level and other risk factors for basal cell carcinoma and squamous cell carcinoma in heart transplant recipients. Arch. Dermatol. 140, 1079–1085 (2004).

    Article  PubMed  Google Scholar 

  56. Opelz, G. & Döhler, B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am. J. Transplant. 4, 222–230 (2004).

    Article  PubMed  Google Scholar 

  57. Dantal, J. et al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomized comparison of two cyclosporin regimens. Lancet 351, 623–628 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Melosky, B. et al. Lymphoproliferative disorders after renal transplantation in patients receiving triple or quadruple immunosuppression. J. Am. Soc. Nephrol. 212 (Suppl.), S290–S294 (1992).

    Google Scholar 

  59. Caforio, A. L. et al. Skin cancer in heart transplant recipients: risk factor analysis and relevance of immunosuppressive therapy. Circulation 102 (Suppl. 3), III222–III227 (2000).

    CAS  PubMed  Google Scholar 

  60. Kirk, A. D. et al. Dissociation of depletional induction and posttransplant lymphoproliferative disease in kidney recipients treated with alemtuzumab. Am. J. Transplant. 7, 2619–2625 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hojo, M. et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 397, 530–534 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Maluccio, M. et al. Tacrolimus enhances transforming growth factor-β1 expression and promotes tumor progression. Transplantation 76, 597–602 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Harwood, C. A. et al. PTCH mutations in basal cell carcinomas from azathioprine-treated organ transplant recipients. Br. J. Cancer 99, 1276–1284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guba, M. et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat. Med. 8, 128–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Luan, F. L. et al. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int. 63, 917–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Guba, M., Graeb, C., Jauch, K. W. & Geissler, E. K. Pro- and anti-cancer effects of immunosuppressive agents used in organ transplantation. Transplantation 77, 1777–1782 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Campistol, J. M. et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J. Am. Soc. Nephrol. 1, 581–589 (2006).

    Article  CAS  Google Scholar 

  68. Mathew, T., Kreis, H. & Friend, P. Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: results from five multicenter studies. Clin. Transplant. 18, 446–449 (2004).

    Article  PubMed  Google Scholar 

  69. Euvrard, S., Ulrich, C. & Lefrancois, N. Immunosuppressants and skin cancer in transplant patients: focus on rapamycin. Dermatol. Surg. 30, 628–633 (2004).

    PubMed  Google Scholar 

  70. Kahan, B. D. et al. Low incidence of malignancy among sirolimus/cyclosporine-treated renal transplant recipients. Transplantation 80, 749–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Campistol, J. M., Gutierrez-Dalmau, A. & Torregrosa, J. V. Conversion to sirolimus: a successful treatment for posttransplantation Kaposi's sarcoma. Transplantation 77, 760–762 (2004).

    Article  PubMed  Google Scholar 

  72. Stallone, G. et al. Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N. Engl. J. Med. 352, 1317–1323 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Kauffman, H. M., Cherikh, W. S., Cheng, Y., Hanto, D. W. & Kahan, B. D. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 80, 883–889 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Ramsay, H. M. et al. Factors associated with nonmelanoma skin cancer following renal transplantation in Queensland, Australia. J. Am. Acad. Dermatol. 49, 397–406 (2003).

    Article  PubMed  Google Scholar 

  75. Dreno, B. Skin cancers after transplantation. Nephrol. Dial. Transplant. 8, 1052–1058 (2003).

    Article  Google Scholar 

  76. Chu, P. G. et al. Epstein–Barr virus (EBV) nuclear antigen (EBNA)-4 mutation in EBV-associated malignancies in three different populations. Am. J. Pathol. 155, 941–947 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van Leeuwen, M. T. et al. Immunosuppression and other risk factors for early and late non-Hodgkin lymphoma after kidney transplantation. Blood 114, 630–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Liebowitz, D. Epstein–Barr virus and a cellular signaling pathway in lymphomas from immunosuppressed patients. N. Engl. J. Med. 338, 1413–1421 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Izumi, K. M., Kaye, K. M. & Kieff, E. D. The Epstein–Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc. Natl Acad. Sci. USA 94, 1447–1452 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song, Y. J., Izumi, K. M., Shinners, N. P., Gewurz, B. E. & Kieff, E. IRF7 activation by Epstein–Barr virus latent membrane protein 1 requires localization at activation sites and TRAF6, but not TRAF2 or TRAF3. Proc. Natl Acad. Sci. USA 105, 18448–18453 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mosialos, G. Cytokine signaling and Epstein–Barr virus-mediated cell transformation. Cytokine Growth Factor Rev. 12, 259–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Caillard, S., Dharnidharka, V., Agodoa, L., Bohen, E. & Abbott, K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation 80, 1233–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Robson, R., Cecka, J. M., Opelz, G., Budde, M. & Sacks, S. Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil. Am. J. Transplant. 5, 2954–2960 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Pirsch, J. D. Cytomegalovirus infection and posttransplant lymphoproliferative disease in renal transplant recipients: results of the U. S. multicenter FK506 Kidney Transplant Study Group. Transplantation 68, 1203–1205 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Birkeland, S. A. & Hamilton-Dutoit, S. Is posttransplant lymphoproliferative disorder (PTLD) caused by any specific immunosuppressive drug or by the transplantation per se? Transplantation 76, 984–988 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Majewski, M. et al. The immunosuppressive macrolide RAD inhibits growth of human Epstein–Barr virus-transformed B lymphocytes in vitro and in vivo: a potential approach to prevention and treatment of posttransplant lymphoproliferative disorders. Proc. Natl Acad. Sci. USA 97, 4285–4290 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Majewski, M. et al. Immunosuppressive TOR kinase inhibitor everolimus (RAD) suppresses growth of cells derived from posttransplant lymphoproliferative disorder at allograft-protecting doses. Transplantation 75, 1710–1717 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Nepomuceno, R. R. et al. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein–Barr virus B-cell lymphomas. Cancer Res. 63, 4472–4480 (2003).

    CAS  PubMed  Google Scholar 

  89. Akula, S. M., Pramod, N. P., Wang, F. Z. & Chandran, B. Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Paulose-Murphy, M. et al. Transcription program of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J. Virol. 75, 4843–4853 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mercader, M. et al. Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am. J. Pathol. 156, 1961–1971 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chang, J., Renne, R., Dittmer, D. & Ganem, D. Inflammatory cytokines and the reactivation of Kaposi's sarcoma-associated herpesvirus lytic replication. Virology 266, 17–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Davis, D. A. et al. Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97, 3244–3250 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Weber, K. S. et al. Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur. J. Immunol. 31, 2458–2466 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Lubyova, B. & Pitha, P. M. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol. 74, 8194–8201 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brander, C. et al. Impaired CTL recognition of cells latently infected with Kaposi's sarcoma-associated herpes virus. J. Immunol. 165, 2077–2083 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Ishido, S., Wang, C., Lee, B. S., Cohen, G. B. & Jung, J. U. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol. 74, 5300–5309 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Coscoy, L. & Ganem, D. A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation. J. Clin. Invest. 107, 1599–1606 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bertin, J. et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 1172–1176 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lundquist, A. et al. Kaposi sarcoma-associated viral cyclin K overrides cell growth inhibition mediated by oncostatin M through STAT3 inhibition. Blood 101, 4070–4077 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Flore, O. et al. Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 394, 588–592 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Pati, S. et al. Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi's sarcoma pathogenesis. J. Virol. 75, 8660–8673 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bais, C. et al. G-protein coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, H. W. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat. Genet. 36, 687–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Qunibi, W. et al. Serologic association of human herpesvirus eight with posttransplant Kaposi's sarcoma in Saudi Arabia. Transplantation 65, 583–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Frances, C. et al. Outcome of kidney transplant recipients with previous human herpesvirus-8 infection. Transplantation 69, 1776–1779 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Diociaiuti, A. et al. HHV8 in renal transplant recipients. Transpl. Int. 13 (Suppl. 1), S410–S412 (2000).

    Article  PubMed  Google Scholar 

  108. Cattani, P. et al. Kaposi's sarcoma associated with previous human herpesvirus 8 infection in kidney transplant recipients. J. Clin. Microbiol. 39, 506–508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Regamey, N. et al. Transmission of human herpesvirus 8 infection from renal-transplant donors to recipients. N. Engl. J. Med. 339, 1358–1363 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Barozzi, P. et al. Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat. Med. 9, 554–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Barozzi, P. et al. Changes in the immune responses against human herpesvirus-8 in the disease course of posttransplant Kaposi sarcoma. Transplantation 86, 738–744 (2008).

    Article  PubMed  Google Scholar 

  112. Maisonneuve, P. et al. Cancer in patients on dialysis for end-stage renal disease: an international collaborative study. Lancet 354, 93–99 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Gulanikar, A. C., Daily, P. P., Kilambi, N. K., Hamrick-Turner, J. E. & Butkus, D. E. Prospective pretransplant ultrasound screening in 206 patients for acquired renal cysts and renal cell carcinoma. Transplantation 66, 1669–1672 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Kasiske, B. L. et al. The evaluation of renal transplant candidates: clinical practice guidelines. Am. J. Transplant. 1 (Suppl. 2), 3–95 (2001).

    PubMed  Google Scholar 

  115. Kasiske, B. L. et al. The evaluation of renal transplant candidates: clinical practice guidelines. J. Am. Soc. Nephrol. 6, 1–34 (1995).

    CAS  PubMed  Google Scholar 

  116. Knoll, G. et al. Canadian Society of Transplantation consensus guidelines on eligibility for kidney transplantation. CMAJ 173, S1–S25 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Penn, I. The effect of immunosuppression on pre-existing cancers. Transplantation 55, 742–747 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Ajithkumar, T. V., Parkinson, C. A., Butler, A. & Hatcher, H. M. Management of solid tumours in organ-transplant recipients. Lancet Oncol. 8, 921–932 (2007).

    Article  PubMed  Google Scholar 

  119. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. (Suppl. 3), S1–S155 (2009).

  120. Fuente, M. J. et al. A prospective study of the incidence of skin cancer and its risk factors in a Spanish Mediterranean population of kidney transplant recipients. Br. J. Dermatol. 149, 1221–1226 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Webster, A. C., Wong, G., Craig, J. C. & Chapman, J. R. Managing cancer risk and decision making after kidney transplantation. Am. J. Transplant. 8, 2185–2191 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Scott, S. D. Rituximab: a new therapeutic monoclonal antibody for non-Hodgkin's lymphoma. Cancer Pract. 6, 195–197 (2001).

    Article  Google Scholar 

  123. Verschuuren, E. A. et al. Treatment of posttransplant lymphoproliferative disease with rituximab: the remission, the relapse, and the complication. Transplantation 73, 100–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Blaes, A. H., Peterson, B. A., Bartlett, N., Dunn, D. L. & Morrison, V. A. Rituximab therapy is effective for posttransplant lymphoproliferative disorders after solid organ transplantation. Cancer 104, 1661–1667 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Choquet, S. et al. Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study. Blood 107, 3053–3057 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. EBPG Expert Group on Renal Transplantation. European best practice guidelines for renal transplantation. Section IV: Long-term management of the transplant recipient. IV.6.1. Cancer risk after renal transplantation. Post-transplant lymphoproliferative disease (PTLD): prevention and treatment. Nephrol. Dial. Transplant. 17 (Suppl. 4), 31–33 (2002).

  127. Sato, T. et al. Monitoring of Epstein–Barr virus load and antibody in pediatric renal transplant patients. Pediatr. Int. 50, 454–458 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Vo, A. A. et al. Use of intravenous immune globulin and rituximab for desensitization of highly HLA-sensitized patients awaiting kidney transplantation. Transplantation 89, 1095–1102 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. van den Hoogen, M. W. & Hilbrands, L. B. More on B-cell-depleting induction therapy and acute cellular rejection. N. Engl. J. Med. 361, 1215 (2009).

    PubMed  Google Scholar 

  130. Durrbach, A. et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am. J. Transplant. 10, 547–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Duman, S. et al. Successful treatment of post-transplant Kaposi's sarcoma by reduction of immunosuppression. Nephrol. Dial. Transplant. 17, 892–896 (2002).

    Article  PubMed  Google Scholar 

  132. Campistol, J. M. Minimizing the risk of posttransplant malignancy. Transplantation 87 (Suppl.), S19–S22 (2009).

    Article  PubMed  Google Scholar 

  133. Mohsin, N. et al. Complete regression of visceral Kaposi's sarcoma after conversion to sirolimus. Exp. Clin. Transplant. 3, 366–369 (2005).

    CAS  PubMed  Google Scholar 

  134. Monaco, A. P. The role of mTOR inhibitors in the management of posttransplant malignancy. Transplantation 87, 157–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Gomez-Camarero, J. et al. Use of everolimus as a rescue immunosuppressive therapy in liver transplant patients with neoplasms. Transplantation 84, 786–791 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Laurie Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

I. Rama and J. M. Grinyó both contributed to researching data for article, discussing the content, writing the article, and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Josep M. Grinyó.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rama, I., Grinyó, J. Malignancy after renal transplantation: the role of immunosuppression. Nat Rev Nephrol 6, 511–519 (2010). https://doi.org/10.1038/nrneph.2010.102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing