Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

PI3K signalling: the path to discovery and understanding

Abstract

Over the past two decades, our understanding of phospoinositide 3-kinases (PI3Ks) has progressed from the identification of an enzymatic activity associated with growth factors, GPCRs and certain oncogene products to a disease target in cancer and inflammation, with PI3K inhibitors currently in clinical trials. Elucidation of PI3K-dependent networks led to the discovery of the phosphoinositide-binding PH, PX and FYVE domains as conduits of intracellular lipid signalling, the determination of the molecular function of the tumour suppressor PTEN and the identification of AKT and mTOR protein kinases as key regulators of cell growth. Here we look back at the main discoveries that shaped the PI3K field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactions catalysed by PI3Ks in cells.
Figure 2: The distinct classes of mammalian PI3Ks.
Figure 3: AKT as an example of a PI3K effector.
Figure 4: The 3-phosphoinositide signalling network.

References

  1. Sugimoto, Y., Whitman, M., Cantley, L. C. & Erikson, R. L. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc. Natl Acad. Sci. USA 81, 2117–2121 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Macara, I. G., Marinetti, G. V. & Balduzzi, P. C. Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tumorigenesis. Proc. Natl Acad. Sci. USA 81, 2728–2732 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L. & Roberts, T. M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239–242 (1985).

    CAS  PubMed  Google Scholar 

  4. Kaplan, D. R. et al. Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc. Natl Acad. Sci. USA 83, 3624–3628 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaplan, D. R. et al. Common elements in growth factor stimulation and oncogenic transformation: 85 KD phosphoprotein and phosphatidylinositol kinase activity. Cell 50, 1021–1029 (1987).

    CAS  PubMed  Google Scholar 

  6. Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).

    CAS  PubMed  Google Scholar 

  7. Traynor-Kaplan, A. E., Harris, A. L., Thompson, B. L., Taylor, P. & Sklar, L. A. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature 334, 353–356 (1988).

    CAS  PubMed  Google Scholar 

  8. Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P. & Cantley, L. C. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57, 167–175 (1989).

    CAS  PubMed  Google Scholar 

  9. Traynor-Kaplan, A. E. et al. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J. Biol. Chem. 264, 15668–15673 (1989).

    CAS  PubMed  Google Scholar 

  10. Stephens, L., Hawkins, P. T. & Downes, C. P. Metabolic and structural evidence for the existence of a third species of polyphosphoinositide in cells: D-phosphatidyl-myo-inositol 3-phosphate. Biochem. J. 259, 267–276 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ruderman, N. B., Kapeller, R., White, M. F. & Cantley, L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl Acad. Sci. USA 87, 1411–1415 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stephens, L. R., Hughes, K. T. & Irvine, R. F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351, 33–39 (1991).

    CAS  PubMed  Google Scholar 

  13. Hawkins, P. T., Jackson, T. R. & Stephens, L. R. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature 358, 157–159 (1992).

    CAS  PubMed  Google Scholar 

  14. Divecha, N. & Irvine, R. F. Phospholipid signaling. Cell 80, 269–278 (1995).

    CAS  PubMed  Google Scholar 

  15. Carpenter, C. L. et al. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem. 265, 19704–19711 (1990).

    CAS  PubMed  Google Scholar 

  16. Morgan, S. J., Smith, A. D. & Parker, P. J. Purification and characterization of bovine brain type I phosphatidylinositol kinase. Eur. J. Biochem. 191, 761–767 (1990).

    CAS  PubMed  Google Scholar 

  17. Shibasaki, F., Homma, Y. & Takenawa, T. Two types of phosphatidylinositol 3-kinase from bovine thymus. Monomer and heterodimer form. J. Biol. Chem. 266, 8108–8114 (1991).

    CAS  PubMed  Google Scholar 

  18. Fry, M. J. et al. Purification and characterization of a phosphatidylinositol 3-kinase complex from bovine brain by using phosphopeptide affinity columns. Biochem. J. 288, 383–393 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Courtneidge, S. A. & Heber, A. An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 50, 1031–1037 (1987).

    CAS  PubMed  Google Scholar 

  20. Otsu, M. et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65, 91–104 (1991).

    CAS  PubMed  Google Scholar 

  21. Escobedo, J. A. et al. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor. Cell 65, 75–82 (1991).

    CAS  PubMed  Google Scholar 

  22. Skolnik, E. Y. et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65, 83–90 (1991).

    CAS  PubMed  Google Scholar 

  23. Hiles, I. D. et al. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70, 419–429 (1992).

    CAS  PubMed  Google Scholar 

  24. Backer, J. M. et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11, 3469–3479 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Herman, P. K. & Emr, S. D. Characterization of Vps34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 6742–6754 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    CAS  PubMed  Google Scholar 

  27. Stephens, L. et al. Characterization of a phosphatidylinositol-specific phosphoinositide 3-kinase from mammalian cells. Curr. Biol. 4, 203–214 (1994).

    CAS  PubMed  Google Scholar 

  28. Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–539 (1996).

    CAS  PubMed  Google Scholar 

  29. MacDougall, L. K., Domin, J. & Waterfield, M. D. A family of phosphoinositide 3-kinases in Drosophila identifies a new mediator of signal transduction. Curr. Biol. 5, 1404–1415 (1995).

    CAS  PubMed  Google Scholar 

  30. Zhou, K., Takegawa, K., Emr, S. D. & Firtel, R. A. A phosphatidylinositol (PI) kinase gene family in Dictyostelium discoideum: biological roles of putative mammalian p110 and yeast Vps34p PI 3-kinase homologs during growth and development. Mol. Cell. Biol. 15, 5645–5656 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

    CAS  PubMed  Google Scholar 

  32. Stephens, L. et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell 77, 83–93 (1994).

    CAS  PubMed  Google Scholar 

  33. Stephens, L. R. et al. The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89, 105–114 (1997).

    CAS  PubMed  Google Scholar 

  34. Stack, J. H., Herman, P. K., Schu, P. V. & Emr, S. D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 12, 2195–2204 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Virbasius, J. V., Guilherme, A. & Czech, M. P. Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain. J. Biol. Chem. 271, 13304–13307 (1996).

    CAS  PubMed  Google Scholar 

  36. Domin, J. et al. Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem. J. 326, 139–147 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Arcaro, A. et al. Human phosphoinositide 3-kinase C2β, the role of calcium and the C2 domain in enzyme activity. J. Biol. Chem. 273, 33082–33090 (1998).

    CAS  PubMed  Google Scholar 

  38. Ono, F. et al. A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration. J. Biol. Chem. 273, 7731–7736 (1998).

    CAS  PubMed  Google Scholar 

  39. Misawa, H. et al. Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain. Biochem. Biophys. Res. Commun. 244, 531–539 (1998).

    CAS  PubMed  Google Scholar 

  40. Maffucci, T., Brancaccio, A., Piccolo, E., Stein, R. C. & Falasca, M. Insulin induces phosphatidylinositol- 3-phosphate formation through TC10 activation. EMBO J. 22, 4178–4189 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zvelebil, M. J. et al. Structural and functional diversity of phosphoinositide 3-kinases. Philos. Trans. R. Soc. Lond. B 351, 217–223 (1996).

    CAS  Google Scholar 

  42. Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. & Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267–272 (1997).

    CAS  PubMed  Google Scholar 

  43. Sjolander, A., Yamamoto, K., Huber, B. E. & Lapetina, E. G. Association of p21ras with phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 88, 7908–7912 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    CAS  PubMed  Google Scholar 

  45. Kodaki, T. et al. The activation of phosphatidylinositol 3-kinase by Ras. Curr. Biol. 4, 798–806 (1994).

    CAS  PubMed  Google Scholar 

  46. Wiesinger, D., Gubler, H. U., Haefliger, W. & Hauser, D. Antiinflammatory activity of the new mould metabolite 11-desacetoxy-wortmannin and of some of its derivatives. Experientia 30, 135–136 (1974).

    CAS  PubMed  Google Scholar 

  47. Arcaro, A. & Wymann, M. P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296, 297–301 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yano, H. et al. Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J. Biol. Chem. 268, 25846–25856 (1993).

    CAS  PubMed  Google Scholar 

  49. Okada, T., Sakuma, L., Fukui, Y., Hazeki, O. & Ui, M. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 269, 3563–3567 (1994).

    CAS  PubMed  Google Scholar 

  50. Powis, G. et al. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res. 54, 2419–2423 (1994).

    CAS  PubMed  Google Scholar 

  51. Thelen, M., Wymann, M. P. & Langen, H. Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc. Natl Acad. Sci. USA 91, 4960–4964 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vlahos, C. J., Matter, W. F., Hui, K. Y. & Brown, R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248 (1994).

    CAS  PubMed  Google Scholar 

  53. Kotani, K. et al. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J. 13, 2313–2321 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Roche, S., Koegl, M. & Courtneidge, S. A. The phosphatidylinositol 3-kinase α is required for DNA synthesis induced by some, but not all, growth factors. Proc. Natl Acad. Sci. USA 91, 9185–9189 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kazlauskas, A. & Cooper, J. A. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58, 1121–1133 (1989).

    CAS  PubMed  Google Scholar 

  56. Fantl, W. J. et al. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69, 413–423 (1992).

    CAS  PubMed  Google Scholar 

  57. Coughlin, S. R., Escobedo, J. A. & Williams, L. T. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 243, 1191–1194 (1989).

    CAS  PubMed  Google Scholar 

  58. Hara, K. et al. 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc. Natl Acad. Sci. USA 91, 7415–7419 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Okada, T., Kawano, Y., Sakakibara, T., Hazeki, O. & Ui, M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269, 3568–3573 (1994).

    CAS  PubMed  Google Scholar 

  60. Wennstrom, S. et al. Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr. Biol. 4, 385–393 (1994).

    CAS  PubMed  Google Scholar 

  61. Wennstrom, S. et al. Membrane ruffling and chemotaxis transduced by the PDGF β-receptor require the binding site for phosphatidylinositol 3′ kinase. Oncogene 9, 651–660 (1994).

    CAS  PubMed  Google Scholar 

  62. Wymann, M. & Arcaro, A. Platelet-derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem. J. 298, 517–520 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Haslam, R. J., Koide, H. B. & Hemmings, B. A. Pleckstrin domain homology. Nature 363, 309–310 (1993).

    CAS  PubMed  Google Scholar 

  64. Mayer, B. J., Ren, R., Clark, K. L. & Baltimore, D. A putative modular domain present in diverse signaling proteins. Cell 73, 629–630 (1993).

    CAS  PubMed  Google Scholar 

  65. Harlan, J. E., Hajduk, P. J., Yoon, H. S. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168–170 (1994).

    CAS  PubMed  Google Scholar 

  66. Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    CAS  PubMed  Google Scholar 

  67. Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736 (1995).

    CAS  PubMed  Google Scholar 

  68. Alessi, D. R. et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr. Biol. 7, 776–789 (1997).

    CAS  PubMed  Google Scholar 

  69. Stephens, L. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279, 710–714 (1998).

    CAS  PubMed  Google Scholar 

  70. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).

    CAS  PubMed  Google Scholar 

  71. Stokoe, D. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567–570 (1997).

    CAS  PubMed  Google Scholar 

  72. Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    CAS  PubMed  Google Scholar 

  74. Alessi, D. R., Caudwell, F. B., Andjelkovic, M., Hemmings, B. A. & Cohen, P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 399, 333–338 (1996).

    CAS  PubMed  Google Scholar 

  75. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    CAS  PubMed  Google Scholar 

  76. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    CAS  PubMed  Google Scholar 

  77. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    CAS  PubMed  Google Scholar 

  78. Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–52 (2001).

    CAS  PubMed  Google Scholar 

  79. Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nature Med. 8, 1136–1144 (2002).

    CAS  PubMed  Google Scholar 

  80. Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Med. 8, 1145–1152 (2002).

    CAS  PubMed  Google Scholar 

  81. Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med. 8, 1153–1160 (2002).

    CAS  PubMed  Google Scholar 

  82. Kane, S. et al. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem. 277, 22115–22118 (2002).

    CAS  PubMed  Google Scholar 

  83. Bruss, M. D., Arias, E. B., Lienhard, G. E. & Cartee, G. D. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 54, 41–50 (2005).

    CAS  PubMed  Google Scholar 

  84. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    CAS  PubMed  Google Scholar 

  85. Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    CAS  PubMed  Google Scholar 

  87. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  88. Biggs, W. H. 3rd, Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA 96, 7421–7426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo, S. et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem. 274, 17184–17192 (1999).

    CAS  PubMed  Google Scholar 

  90. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179–17183 (1999).

    CAS  PubMed  Google Scholar 

  91. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).

    CAS  PubMed  Google Scholar 

  92. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biol. 4, 658–665 (2002).

    CAS  PubMed  Google Scholar 

  93. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    CAS  PubMed  Google Scholar 

  94. Hawkins, P. T. et al. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol. 5, 393–403 (1995).

    CAS  PubMed  Google Scholar 

  95. Cheatham, B. et al. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol. 14, 4902–4911 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chung, J., Grammer, T. C., Lemon, K. P., Kazlauskas, A. & Blenis, J. PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 370, 71–75 (1994).

    CAS  PubMed  Google Scholar 

  97. Welsh, G. I., Foulstone, E. J., Young, S. W., Tavare, J. M. & Proud, C. G. Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase-3 and mitogen-activated protein kinase. Biochem. J. 303, 15–20 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Andjelkovic, M. et al. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515–31524 (1997).

    CAS  PubMed  Google Scholar 

  99. Venkateswarlu, K., Oatey, P. B., Tavare, J. M. & Cullen, P. J. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr. Biol. 8, 463–466 (1998).

    CAS  PubMed  Google Scholar 

  100. Li, Z. et al. Phosphatidylinositol 3-kinaseγ activates Bruton's tyrosine kinase in concert with Src family kinases. Proc. Natl Acad. Sci. USA 94, 13820–13825 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Isakoff, S. J. et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17, 5374–5387 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dowler, S. et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351, 19–31 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Klarlund, J. K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927–1930 (1997).

    CAS  PubMed  Google Scholar 

  104. Welch, H. C. et al. P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell 108, 809–821 (2002).

    CAS  PubMed  Google Scholar 

  105. Krugmann, S. et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell 9, 95–108 (2002).

    CAS  PubMed  Google Scholar 

  106. Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 15, 6241–6250 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Varnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell. Biol. 143, 501–510 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18, 2092–2105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Stenmark, H., Aasland, R., Toh, B. H. & D'Arrigo, A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J. Biol. Chem. 271, 24048–24054 (1996).

    CAS  PubMed  Google Scholar 

  111. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    CAS  PubMed  Google Scholar 

  112. Gaullier, J. M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    CAS  PubMed  Google Scholar 

  113. Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature 394, 433–434 (1998).

    CAS  PubMed  Google Scholar 

  114. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 (1998).

    CAS  PubMed  Google Scholar 

  115. Song, X. et al. Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40, 8940–8944 (2001).

    CAS  PubMed  Google Scholar 

  116. Ellson, C. D. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biol. 3, 679–682 (2001).

    CAS  PubMed  Google Scholar 

  117. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol. 3, 675–678 (2001).

    CAS  PubMed  Google Scholar 

  118. Cheever, M. L. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biol. 3, 613–618 (2001).

    CAS  PubMed  Google Scholar 

  119. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    CAS  PubMed  Google Scholar 

  120. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nature Rev. Mol. Cell. Biol. 11, 329–341 (2010).

    CAS  Google Scholar 

  122. Leevers, S. J., Weinkove, D., MacDougall, L. K., Hafen, E. & Waterfield, M. D. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J. 15, 6584–6594 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chang, H. W. et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276, 1848–1850 (1997).

    CAS  PubMed  Google Scholar 

  124. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    CAS  PubMed  Google Scholar 

  125. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    CAS  PubMed  Google Scholar 

  126. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    CAS  PubMed  Google Scholar 

  127. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  128. Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Jou, S. T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol. Cell. Biol. 22, 8580–8591 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Foukas, L. C. et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006).

    CAS  PubMed  Google Scholar 

  131. Knight, Z. A. et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125, 733–747 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    CAS  PubMed  Google Scholar 

  133. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    CAS  PubMed  Google Scholar 

  134. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    CAS  PubMed  Google Scholar 

  135. Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nature Genet. 16, 333–334 (1997).

    CAS  PubMed  Google Scholar 

  136. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    CAS  PubMed  Google Scholar 

  137. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    CAS  PubMed  Google Scholar 

  138. Campbell, I. G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 64, 7678–7681 (2004).

    CAS  PubMed  Google Scholar 

  139. Jimenez, C. et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J. 17, 743–753 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Philp, A. J. et al. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res. 61, 7426–7429 (2001).

    CAS  PubMed  Google Scholar 

  141. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  142. Jaiswal, B. S. et al. Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell 16, 463–474 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Blondeau, F. et al. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum. Mol. Genet. 9, 2223–2229 (2000).

    CAS  PubMed  Google Scholar 

  144. Taylor, G. S., Maehama, T. & Dixon, J. E. Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc. Natl Acad. Sci. USA 97, 8910–8915 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bielas, S. L. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nature Genet. 41, 1032–1036 (2009).

    CAS  PubMed  Google Scholar 

  146. Jacoby, M. et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nature Genet. 41, 1027–1031 (2009).

    CAS  PubMed  Google Scholar 

  147. Sadhu, C., Masinovsky, B., Dick, K., Sowell, C. G. & Staunton, D. E. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol. 170, 2647–2654 (2003).

    CAS  PubMed  Google Scholar 

  148. Camps, M. et al. Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nature Med. 11, 936–943 (2005).

    CAS  PubMed  Google Scholar 

  149. Jackson, S. P. et al. PI 3-kinase p110β: a new target for antithrombotic therapy. Nature Med. 11, 507–514 (2005).

    CAS  PubMed  Google Scholar 

  150. Walker, E. H., Perisic, O., Ried, C., Stephens, L. & Williams, R. L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402, 313–320 (1999).

    CAS  PubMed  Google Scholar 

  151. Huang, C. H. et al. The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. Science 318, 1744–1748 (2007).

    CAS  PubMed  Google Scholar 

  152. Zhang, X. et al. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol. Cell 41, 567–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Berndt, A. et al. The p110 δ structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nature Chem. Biol. 6, 117–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Miller, S. et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327, 1638–1642 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Joly, M., Kazlauskas, A., Fay, F. S. & Corvera, S. Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase binding sites. Science 263, 684–687 (1994).

    CAS  PubMed  Google Scholar 

  156. Volinia, S. et al. A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p–Vps15p protein sorting system. EMBO J. 14, 3339–3348 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Yao, R. & Cooper, G. M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006 (1995).

    CAS  PubMed  Google Scholar 

  158. Scheid, M. P., Lauener, R. W. & Duronio, V. Role of phosphatidylinositol 3-OH-kinase activity in the inhibition of apoptosis in haemopoietic cells: phosphatidylinositol 3-OH-kinase inhibitors reveal a difference in signalling between interleukin-3 and granulocyte-macrophage colony stimulating factor. Biochem. J. 312, 159–162 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Vanhaesebroeck, B. et al. P110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl Acad. Sci. USA 94, 4330–4335 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Chantry, D. et al. p110δ, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J. Biol. Chem. 272, 19236–19241 (1997).

    CAS  PubMed  Google Scholar 

  161. Dudek, H. et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665 (1997).

    CAS  PubMed  Google Scholar 

  162. Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. & Downward, J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16, 2783–2793 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kauffmann-Zeh, A. et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385, 544–548 (1997).

    CAS  PubMed  Google Scholar 

  164. Kulik, G., Klippel, A. & Weber, M. J. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol. Cell. Biol. 17, 1595–1606 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kennedy, S. G. et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11, 701–713 (1997).

    CAS  PubMed  Google Scholar 

  166. Ahmed, N. N., Grimes, H. L., Bellacosa, A., Chan, T. O. & Tsichlis, P. N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl Acad. Sci. USA 94, 3627–3632 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Myers, M. P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA 95, 13513–13518 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).

    CAS  PubMed  Google Scholar 

  169. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    CAS  PubMed  Google Scholar 

  170. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    CAS  PubMed  Google Scholar 

  171. Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nature Genet. 21, 230–235 (1999).

    CAS  PubMed  Google Scholar 

  172. Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999).

    CAS  PubMed  Google Scholar 

  173. Gewinner, C. et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16, 115–125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Fedele, C. G. et al. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc. Natl Acad. Sci. USA 107, 22231–2236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of B.V. is supported by Cancer Research UK (C23338/A10200) and the UK Biotechnology and Biological Sciences Research Council (BBSRC) (BB/I007806/1). Work in the L.S. and P.H. laboratory is supported by the Welcome Trust (WT 085,889) and the BBSRC (BB/I008489/1, BBI003916/1). The authors apologize to those authors whose work is not cited owing to space constraints or oversight on the authors' part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Vanhaesebroeck.

Ethics declarations

Competing interests

Bart Vanhaesebroeck is a consultant to GSK (Stevenage, UK) and Activiomics (London).

Len Stephens and Phillip Hawkins declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bart Vanhaesebroeck's homepage

Pfam

PI3K inhibitor clinical trials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13, 195–203 (2012). https://doi.org/10.1038/nrm3290

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing