Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Filling out the Hippo pathway

Key Points

  • Studies in Drosophila melanogaster have delineated a novel signalling pathway, the Hippo pathway, which has an important role in restraining cell proliferation and promoting apoptosis in differentiating epithelia. Although this pathway is currently poorly characterized in mammals, several components of the Hippo pathway appear to function as tumour suppressors.

  • The protein Fat, originally discovered in D. melanogaster as the founding member of a subfamily of genes called protocadherins, has been newly identified as an upstream regulator of the Hippo pathway. The data suggest that Fat increases Hippo activity by two mechanisms: it modulates Hippo activity through phosphorylation and stabilizes the Warts protein (a central kinase of the Hippo signal transduction pathway).

  • Two recent reports have identified a new transcriptional target downstream of the Hippo pathway in D. melanogaster that can promote tissue growth and inhibit apoptosis: the microRNA bantam. However, it remains unclear how bantam promotes cell proliferation and whether the mechanism(s) is conserved in mammals.

  • In flies and mammals, Hippo signalling promotes apoptosis in response to irradiation. Recent work in D. melanogaster suggests that p53 is responsible for the activation of Hippo following irradiation, and that members of the Ras association family can temper this response.

  • Loss of Hippo signalling allows cells in the developing fly to outcompete and eliminate neighbouring wild-type cells. This phenomenon is known as supercompetition. The mechanism(s) that enables Hippo-mutant cells to act as 'supercompetitors' remains unclear.

  • Two unresolved questions pertaining to the Hippo pathway are: do extracellular ligands regulate Hippo activity by binding to Fat? And does the supercompetition phenotype of Hippo mutants contribute to mammalian tumorigenesis?

Abstract

How cell numbers are controlled during organ development is a problem that is still in need of answers. Recent studies in Drosophila melanogaster have delineated a novel signalling pathway, the Hippo pathway, which has an important role in restraining cell proliferation and promoting apoptosis in differentiating epithelial cells. Much like cancer cells, cells that contain mutations for components of the Hippo pathway proliferate inappropriately and have a competitive edge in genetically mosaic tissues. Although poorly characterized in mammals, several components of the Hippo pathway seem to be tumour suppressors in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Hippo signalling pathway.
Figure 2: Warts and Fat mutant phenotypes.
Figure 3: Regulation of Hippo signalling.
Figure 4: Inactivation of Hippo signalling promotes cell competition.

Similar content being viewed by others

References

  1. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  2. Potter, C. J., Turenchalk, G. S. & Xu, T. Drosophila in cancer research. An expanding role. Trends Genet. 16, 33–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. McClatchey, A. I. & Giovannini, M. Membrane organization and tumorigenesis — the NF2 tumor suppressor, Merlin. Genes Dev. 19, 2265–2277 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA 103, 12405–12410 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edgar, B. A. From cell structure to transcription: Hippo forges a new path. Cell 124, 267–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Pan, D. Hippo signaling in organ size control. Genes Dev. 21, 886–897 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Harvey, K. & Tapon, N. The Salvador–Warts–Hippo pathway — an emerging tumour-suppressor network. Nature Rev. Cancer 7, 182–191 (2007).

    Article  CAS  Google Scholar 

  9. Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, T. A., Wang, W. Y., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics — the Drosophila lats gene encodes a putative protein-kinase. Development 121, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  11. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Pantalacci, S., Tapon, N. & Leopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nature Cell Biol. 5, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Tapon, N. et al. salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nature Cell Biol. 5, 914–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, S., Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lai, Z. C. et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wei, X., Shimizu, T. & Lai, Z. C. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J. 26, 1772–1781 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chan, E. H. et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076–2086 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hergovich, A., Schmitz, D. & Hemmings, B. A. The human tumour suppressor LATS1 is activated by human MOB1 at the membrane. Biochem. Biophys. Res. Commun. 345, 50–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Callus, B. A., Verhagen, A. M. & Vaux, D. L. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 273, 4264–4276 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Strano, S. et al. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol. Cell 18, 447–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Howell, M., Borchers, C. & Milgram, S. L. Heterogeneous nuclear ribonuclear protein U associates with YAP and regulates its co-activation of Bax transcription. J. Biol. Chem. 279, 26300–26306 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Zaidi, S. K. et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J. 23, 790–799 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Komuro, A., Nagai, M., Navin, N. E. & Sudol, M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278, 33334–33341 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ferrigno, O. et al. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-β/Smad signaling. Oncogene 21, 4879–4884 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Espanel, X. & Sudol, M. Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J. Biol. Chem. 276, 14514–14523 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y. & Ito, Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18, 2551–2562 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levy, D., Adamovich, Y., Reuven, N. & Shaul, Y. The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ. 14, 743–751 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Guo, J. et al. Yes-associated protein (YAP65) in relation to Smad7 expression in human pancreatic ductal adenocarcinoma. Int. J. Mol. Med. 17, 761–767 (2006).

    CAS  PubMed  Google Scholar 

  32. Vassilev, A., Kaneko, K. J., Shu, H., Zhao, Y. & DePamphilis, M. L. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 15, 1229–1241 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basu, S., Totty, N. F., Irwin, M. S., Sudol, M. & Downward, J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Strano, S. et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J. Biol. Chem. 276, 15164–15173 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol. 3, 586–599 (2002).

    Article  CAS  Google Scholar 

  36. Boedigheimer, M. & Laughon, A. expanded: a gene involved in the control of cell proliferation in imaginal discs. Development 118, 1291–1301 (1993).

    CAS  PubMed  Google Scholar 

  37. Boedigheimer, M. J., Nguyen, K. P. & Bryant, P. J. expanded functions in the apical cell domain to regulate the growth rate of imaginal discs. Dev. Genet. 20, 103–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. McCartney, B. M., Kulikauskas, R. M., LaJeunesse, D. R. & Fehon, R. G. The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127, 1315–1324 (2000).

    CAS  PubMed  Google Scholar 

  39. Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nature Cell Biol. 8, 27–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Pellock, B. J., Buff, E., White, K. & Hariharan, I. K. The Drosophila tumor suppressors Expanded and Merlin differentially regulate cell cycle exit, apoptosis, and Wingless signaling. Dev. Biol. 304, 102–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Okada, T., Lopez-Lago, M. & Giancotti, F. G. Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J. Cell Biol. 171, 361–371 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaw, R. J. et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell 1, 63–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lallemand, D., Curto, M., Saotome, I., Giovannini, M. & McClatchey, A. I. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 17, 1090–1100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McPherson, J. P. et al. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J. 23, 3677–3688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Buttitta, L. A double-assurance mechanism controls cell cycle exit at differentiation in Drosophila. Dev. Cell 12, 631–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, X., Li, D. M., Chen, W. & Xu, T. Human homologue of Drosophila lats, LATS1, negatively regulate growth by inducing G(2)/M arrest or apoptosis. Oncogene 20, 6516–6523 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Xia, H. et al. LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene 21, 1233–1241 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Li, Y. et al. Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene 22, 4398–4405 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, K. K., Ohyama, T., Yajima, N., Tsubuki, S. & Yonehara, S. MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J. Biol. Chem. 276, 19276–19285 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Avruch, J., Praskova, M., Ortiz-Vega, S., Liu, M. & Zhang, X. F. Nore1 and RASSF1 regulation of cell proliferation and of the MST1/2 kinases. Methods Enzymol. 407, 290–310 (2005).

    Article  CAS  Google Scholar 

  52. Praskova, M., Khoklatchev, A., Ortiz-Vega, S. & Avruch, J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J. 381, 453–462 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo, C. et al. RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr. Biol. 17, 700–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Bryant, P. J., Huettner, B., Held, L. I. Jr, Ryerse, J. & Szidonya, J. Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev. Biol. 129, 541–554 (1988).

    Article  CAS  PubMed  Google Scholar 

  55. Mahoney, P. A. et al. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67, 853–868 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Matakatsu, H. & Blair, S. S. Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development 131, 3785–3794 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Hong, J. C. et al. Identification of new human cadherin genes using a combination of protein motif search and gene finding methods. J. Mol. Biol. 337, 307–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Ma, D., Yang, C. H., McNeill, H., Simon, M. A. & Axelrod, J. D. Fidelity in planar cell polarity signalling. Nature 421, 543–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Cho, E. & Irvine, K. D. Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling. Development 131, 4489–4500 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Jaiswal, M., Agrawal, N. & Sinha, P. Fat and Wingless signaling oppositely regulate epithelial cell–cell adhesion and distal wing development in Drosophila. Development 133, 925–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Strutt, H. & Strutt, D. Long-range coordination of planar polarity in Drosophila. Bioessays 27, 1218–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Bennett, F. C. & Harvey, K. F. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr. Biol. 16, 2101–2110 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nature Genet. 38, 1142–1150 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr. Biol. 16, 2081–2089 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Willecke, M. et al. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol. 16, 2090–2100 (2006).

    CAS  PubMed  Google Scholar 

  66. Tyler, D. M. & Baker, N. E. Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev. Biol. 305, 187–201 (2007). References 62–66 all report independent findings that provide a considerable amount of biochemical and genetic data to position the Hippo pathway as the general mediator of Fat signalling in growth control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Formstecher, E. et al. Protein interaction mapping: a Drosophila case study. Genome Res. 15, 376–384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mao, Y. et al. Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila. Development 133, 2539–2551 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Nolo, R., Morrison, C. M., Tao, C., Zhang, X. & Halder, G. The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr. Biol. 16, 1895–1904 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006). References 69 and 70 demonstrate that activation of Yki (normally inhibited by Hippo signalling) leads to the transcriptional induction of bantam , a microRNA that has the ability to promote tissue growth and inhibit apoptosis.

    Article  CAS  PubMed  Google Scholar 

  71. Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Matakatsu, H. & Blair, S. S. Separating the adhesive and signaling functions of the Fat and Dachsous protocadherins. Development 133, 2315–2324 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Maitra, S., Kulikauskas, R. M., Gavilan, H. & Fehon, R. G. The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr. Biol. 16, 702–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Garoia, F. et al. The tumor suppressor gene fat modulates the EGFR-mediated proliferation control in the imaginal tissues of Drosophila melanogaster. Mech. Dev. 122, 175–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, L. & Baker, N. E. Cell cycle withdrawal, progression, and cell survival regulation by EGFR and its effectors in the differentiating Drosophila eye. Dev. Cell 4, 359–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. O'Neill, E. & Kolch, W. Taming the Hippo: Raf-1 controls apoptosis by suppressing MST2/Hippo. Cell Cycle 4, 365–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Colombani, J., Polesello, C., Josue, F. & Tapon, N. Dmp53 activates the Hippo pathway to promote cell death in response to DNA damage. Curr. Biol. 16, 1453–1458 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Polesello, C., Huelsmann, S., Brown, N. H. & Tapon, N. The Drosophila RASSF homolog antagonizes the hippo pathway. Curr. Biol. 16, 2459–2465 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).

    Article  CAS  PubMed  Google Scholar 

  81. Lambertsson, A. The minute genes in Drosophila and their molecular functions. Adv. Genet. 38, 69–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117, 117–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Tyler, D., Li, W., Zhuo, N., Pellock, B. J. & Baker, N. E. Genes affecting cell competition in Drosophila melanogaster. Genetics 175, 643–657 (2006). Shows that mutations in components of the Hippo pathway enable cells to outcompete and eliminate wild-type neighbouring cells. However, the mechanisms that underlie this phenotype remain unclear.

    Article  CAS  PubMed  Google Scholar 

  85. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Oskarsson, T. & Trumpp, A. The Myc trilogy: lord of RNA polymerases. Nature Cell Biol. 7, 215–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Nakaya, K. et al. Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene 26 Feb 2007 (doi:10.1038/sj.onc.1210330).

  88. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  89. Katoh, Y. & Katoh, M. Comparative integromics on FAT1, FAT2, FAT3 and FAT4. Int. J. Mol. Med. 18, 523–528 (2006).

    CAS  PubMed  Google Scholar 

  90. Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791–800 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Ruttledge, M. H. et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nature Genet. 6, 180–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Yoo, N. J. et al. Mutational analysis of salvador gene in human carcinomas. APMIS 111, 595–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. St John, M. A. et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nature Genet. 21, 182–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Hisaoka, M., Tanaka, A. & Hashimoto, H. Molecular alterations of h-warts/LATS1 tumor suppressor in human soft tissue sarcoma. Lab. Invest. 82, 1427–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Leslie J. Saucedo's homepage

Bruce A. Edgar's homepage

Glossary

FERM domain

An amino-acid homology domain that was first identified in the Band 4.1 family of proteins (4.1, ezrin, radixin and moesin). This domain typically localizes to cell surfaces and crosslinks the actin cytoskeleton with the plasma membrane.

Protocadherin

A member of the largest subgroup of the cadherin family. Protocadherins have extensive extracellular domains and cytoplasmic domains that vary widely from each other and from the domains of classic cadherins.

Adherens junction

An adhesive junction that is commonly found between epithelial cells. It is maintained by extracellular interactions of cadherin proteins and intracellular interactions with the actin cytoskeleton.

Desmosomal junction

An adhesive junction between epithelial cells that is located basally to adherens junctions. It is maintained by extracellular interactions of cadherin proteins that are anchored intracellularly to intermediate filaments.

Unconventional myosin

A member of a class of motor proteins that interact with the actin cytoskeleton and have been shown to direct intracellular vesicle transport and to contribute to neurosensory function.

Interommatidial cell

One of a single layer of pigment cells that surround each ommatidia in the adult eye of Drosophila melanogaster. These cells are produced in excess before being reduced by apoptosis during insect development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saucedo, L., Edgar, B. Filling out the Hippo pathway. Nat Rev Mol Cell Biol 8, 613–621 (2007). https://doi.org/10.1038/nrm2221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing