Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human memory T cells: generation, compartmentalization and homeostasis

Key Points

  • Most of our understanding of memory T cell generation, function and maintenance comes from mouse studies, which cannot recapitulate the exposure to diverse antigens and microbiota that occurs over many decades in humans.

  • Memory T cell frequency dynamically changes throughout the human lifetime and this can be divided into three phases: memory generation, memory homeostasis and immunosenescence.

  • CD45RO+CD45RA T cells comprise diverse memory T cell subsets, including central memory T (TCM) cells, effector memory T (TEM) cells, stem cell memory T (TSCM) cells and tissue-resident memory T (TRM) cells, which are heterogeneous in their generation, distribution and function.

  • Memory T cells that are specific for antigens from ubiquitous pathogens and possibly from endogenous flora are generated early in life and are preferentially compartmentalized at the sites of infection throughout adulthood.

  • Human memory T cells in diverse tissue sites are homeostatically maintained, potentially through tonic T cell receptor signalling, and can show extensive cross reactivity and can persist for decades.

  • The induction of memory CD4+ and CD8+ T cells through vaccination can enhance protection against pathogens, and might be improved by considering the anatomical location and the timing of vaccine administration during the early stages of life.

Abstract

Memory T cells constitute the most abundant lymphocyte population in the body for the majority of a person's lifetime; however, our understanding of memory T cell generation, function and maintenance mainly derives from mouse studies, which cannot recapitulate the exposure to multiple pathogens that occurs over many decades in humans. In this Review, we discuss studies focused on human memory T cells that reveal key properties of these cells, including subset heterogeneity and diverse tissue residence in multiple mucosal and lymphoid tissue sites. We also review how the function and the adaptability of human memory T cells depend on spatial and temporal compartmentalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Memory T cell frequency, pathogen susceptibility and mortality throughout human life.
Figure 2: A model for the generation of human memory T cell subsets.
Figure 3: Schematic of memory T cell heterogeneity in the blood and in tissues.
Figure 4: Model for the compartmentalization of antigen-specific memory T cell subsets in space and time.

Similar content being viewed by others

References

  1. Remakus, S. & Sigal, L. J. Memory CD8+ T cell protection. Adv. Exp. Med. Biol. 785, 77–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Wherry, E. J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teijaro, J. R. et al. Costimulation modulation uncouples protection from immunopathology in memory T cell responses to influenza virus. J. Immunol. 182, 6834–6843 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011). This study identifies the retention of CD4+ T RM cells in mouse lungs and shows that lung T RM cells have a superior protective capacity against influenza virus infection compared with circulating spleen memory CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  5. Teijaro, J. R., Verhoeven, D., Page, C. A., Turner, D. & Farber, D. L. Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J. Virol. 84, 9217–9226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunol. 8, 369–377 (2007).

    Article  CAS  Google Scholar 

  7. Anthony, R. M. et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nature Med. 12, 955–960 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Cossarizza, A. et al. CD45 isoforms expression on CD4+ and CD8+ T cells throughout life, from newborns to centenarians: implications for T cell memory. Mech. Ageing Dev. 86, 173–195 (1996). This paper is an early survey of memory T cell frequencies in peripheral blood throughout the human lifespan.

    Article  CAS  PubMed  Google Scholar 

  10. Christensen, K. L. et al. Infectious disease hospitalizations in the United States. Clin. Infect. Dis. 49, 1025–1035 (2009).

    Article  PubMed  Google Scholar 

  11. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013). This study describes a whole-body analysis of T cell subsets in the blood and in multiple lymphoid and mucosal sites from individual organ donors. It identifies how memory T cell subsets are differentially compartmentalized in tissue sites and that this compartmentalization is remarkably conserved between diverse individuals.

    Article  CAS  PubMed  Google Scholar 

  12. Saule, P. et al. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech. Ageing Dev. 127, 274–281 (2006). This paper is an excellent survey of peripheral blood T cell subsets in a large cohort of individuals from birth to old age.

    Article  CAS  PubMed  Google Scholar 

  13. den Braber, I. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–297 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nature Immunol. 14, 428–436 (2013).

    Article  CAS  Google Scholar 

  15. Nikolich-Zugich, J. & Rudd, B. D. Immune memory and aging: an infinite or finite resource? Curr. Opin. Immunol. 22, 535–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Clark, R. A. et al. A novel method for the isolation of skin resident T cells from normal and diseased human skin. J. Invest. Dermatol. 126, 1059–1070 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Purwar, R. et al. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS ONE. 6, e16245 (2011). The study describes the phenotype and the functional properties of human T RM cells in lung tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ganusov, V. V. & De Boer, R. J. Do most lymphocytes in humans really reside in the gut? Trends Immunol. 28, 514–518 (2007). This study provides a novel quantitative assessment of human T cell numbers in mucosal and lymphoid tissues.

    Article  CAS  PubMed  Google Scholar 

  20. Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Bunders, M. J. et al. Memory CD4+CCR5+ T cells are abundantly present in the gut of newborn infants to facilitate mother-to-child transmission of HIV-1. Blood 120, 4383–4390 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Dos Santos, A. B. et al. Immune cell profile in infants' lung tissue. Ann. Anat. http://dx.doi.org/10.1016/j.aanat.2013.05.003 (2013).

  23. Kupper, T. S. Old and new: recent innovations in vaccine biology and skin T cells. J. Invest. Dermatol. 132, 829–834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanders, M. E. et al. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFNγ production. J. Immunol. 140, 1401–1407 (1988).

    CAS  PubMed  Google Scholar 

  25. Smith, S. H., Brown, M. H., Rowe, D., Callard, R. E. & Beverley, P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology 58, 63–70 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999). This publication is a seminal study that describes memory T cell heterogeneity in humans and establishes a new paradigm for memory T cell heterogeneity.

    Article  CAS  PubMed  Google Scholar 

  27. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001). This study establishes the heterogeneous tissue distribution of antiviral memory CD8+ T cells, as well as the biased distribution of T EM cells in non-lymphoid sites.

    Article  CAS  PubMed  Google Scholar 

  29. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, A. et al. The stoichiometric production of IL-2 and IFNγ mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci. Transl. Med. 4, 149ra120 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Pedron, B. et al. Development of cytomegalovirus and adenovirus-specific memory CD4 T-cell functions from birth to adulthood. Pediatr. Res. 69, 106–111 (2011). In this study, the authors provide a comprehensive assessment of CMV-specific and adenovirus-specific memory T cells in a large cohort, in cross-sectional studies of individuals from birth to throughout adulthood.

    Article  PubMed  Google Scholar 

  32. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ellefsen, K. et al. Distribution and functional analysis of memory antiviral CD8 T cell responses in HIV-1 and cytomegalovirus infections. Eur. J. Immunol. 32, 3756–3764 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Fearon, D. T., Carr, J. M., Telaranta, A., Carrasco, M. J. & Thaventhiran, J. E. The rationale for the IL-2-independent generation of the self-renewing central memory CD8+ T cells. Immunol. Rev. 211, 104–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nature Med. 17, 1290–1297 (2011). This study identifies a new, self-renewing population of memory T cells in human blood, designated T SCM cells, and provides functional and phenotypic characterization, as well as enumerating their potential in immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S. G. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nature Med. 11, 1299–1305 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Gattinoni, L., Ji, Y. & Restifo, N. P. Wnt/β-catenin signaling in T-cell immunity and cancer immunotherapy. Clin. Cancer Res. 16, 4695–4701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nature Rev. Cancer. 12, 671–684 (2012).

    Article  CAS  Google Scholar 

  39. Klebanoff, C. A., Gattinoni, L. & Restifo, N. P. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211, 214–224 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nature Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  Google Scholar 

  41. Ahmed, R., Bevan, M. J., Reiner, S. L. & Fearon, D. T. The precursors of memory: models and controversies. Nature Rev. Immunol. 9, 662–668 (2009).

    Article  CAS  Google Scholar 

  42. Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Stemberger, C. et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Campbell, J. J. et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol. http://dx.doi.org/10.1038/mi.2013.67 (2013).

  48. Herndler-Brandstetter, D. et al. Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J. Immunol. 186, 6965–6971 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl. Med. 4, 117ra117 (2012). By examining a cohort of patients being treated with T cell depletion therapy that reduces peripheral T cell numbers, this study provides evidence that T RM cells in the human skin can provide protection against virus infection.

    Article  CAS  Google Scholar 

  51. Liu, L. et al. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nature Med. 16, 224–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Anderson, K. G. et al. Cutting edge: intravascular staining redefines lung CD8 T cell responses. J. Immunol. 189, 2702–2706 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Masopust, D. & Picker, L. J. Hidden memories: frontline memory T cells and early pathogen interception. J. Immunol. 188, 5811–5817 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Gebhardt, T. & Mackay, L. K. Local immunity by tissue-resident CD8+ memory T cells. Front. Immunol. 3, 340 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012). This study shows that, in mice, skin T RM cells do not circulate and that these cells mediate protection to viral infection of the skin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunol. 10, 524–530 (2009).

    Article  CAS  Google Scholar 

  63. Wakim, L. M., Gebhardt, T., Heath, W. R. & Carbone, F. R. Cutting edge: local recall responses by memory T cells newly recruited to peripheral nonlymphoid tissues. J. Immunol. 181, 5837–5841 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Tokoyoda, K. et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30, 721–730 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Lugli, E. et al. Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest. 123, 594–599 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gebhardt, T., Mueller, S. N., Heath, W. R. & Carbone, F. R. Peripheral tissue surveillance and residency by memory T cells. Trends Immunol. 34, 27–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Clark, R. A. Skin-resident T cells: the ups and downs of on site immunity. J. Invest. Dermatol. 130, 362–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Homey, B. et al. CCL27–CCR10 interactions regulate T cell-mediated skin inflammation. Nature Med. 8, 157–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kunkel, E. J. et al. Lymphocyte CC-chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J. Exp. Med. 192, 761–768 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Agace, W. W. T-cell recruitment to the intestinal mucosa. Trends Immunol. 29, 514–522 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ruane, D. et al. Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J. Exp. Med. 210, 1871–1888 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Edele, F. et al. Cutting edge: instructive role of peripheral tissue cells in the imprinting of T cell homing receptor patterns. J. Immunol. 181, 3745–3749 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Stagg, A. J., Kamm, M. A. & Knight, S. C. Intestinal dendritic cells increase T cell expression of α4β7 integrin. Eur. J. Immunol. 32, 1445–1454 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Cimbro, R. et al. IL-7 induces expression and activation of integrin α4β7 promoting naive T-cell homing to the intestinal mucosa. Blood 120, 2610–2619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, H. H. et al. CCR2 identifies a stable population of human effector memory CD4+ T cells equipped for rapid recall response. J. Immunol. 185, 6646–6663 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, C. H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Campbell, D. J., Kim, C. H. & Butcher, E. C. Chemokines in the systemic organization of immunity. Immunol. Rev. 195, 58–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Andrew, D. P. et al. CC chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both TH1 and TH2 potential. J. Immunol. 166, 103–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: implications for vaccine design. Nature Rev. Immunol. 8, 247–258 (2008).

    Article  CAS  Google Scholar 

  80. Zhang, X. et al. Human bone marrow: a reservoir for “enhanced effector memory” CD8+ T cells with potent recall function. J. Immunol. 177, 6730–6737 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Singh, S. P., Zhang, H. H., Foley, J. F., Hedrick, M. N. & Farber, J. M. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J. Immunol. 180, 214–221 (2008). This study shows how IL-17-producing human memory T cells are specifically maintained within a CCR6-expressing T cell subset.

    Article  CAS  PubMed  Google Scholar 

  82. Wan, Q. et al. Cytokine signals through PI-3 kinase pathway modulate TH17 cytokine production by CCR6+ human memory T cells. J. Exp. Med. 208, 1875–1887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cosmi, L. et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med. 205, 1903–1916 (2008). This study identifies a specific subset of IL-17-producing memory T cells that expresses CD161 in inflamed tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nature Immunol. 10, 857–863 (2009).

    Article  CAS  Google Scholar 

  85. Eyerich, S. et al. TH22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Chomont, N., DaFonseca, S., Vandergeeten, C., Ancuta, P. & Sekaly, R. P. Maintenance of CD4+ T-cell memory and HIV persistence: keeping memory, keeping HIV. Curr. Opin. HIV AIDS 6, 30–36 (2011).

    Article  PubMed  Google Scholar 

  88. Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nature Med. 15, 893–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Eisele, E. & Siliciano, R. F. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37, 377–388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chakrabarti, L. A. & Simon, V. Immune mechanisms of HIV control. Curr. Opin. Immunol. 22, 488–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Youngblood, B., Wherry, E. J. & Ahmed, R. Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells. Curr. Opin. HIV AIDS 7, 50–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Walker, B. & McMichael, A. The T-cell response to HIV. Cold Spring Harb Perspect Med. http://dx.doi.org/10.1101/cshperspect.a007054 (2012).

  93. Marchant, A. et al. Mature CD8+ T lymphocyte response to viral infection during fetal life. J. Clin. Invest. 111, 1747–1755 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Komatsu, H. et al. Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses. Immun. Ageing 3, 11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He, X. S. et al. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J. Virol. 80, 11756–11766 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. He, X. S. et al. Analysis of the frequencies and of the memory T cell phenotypes of human CD8+ T cells specific for influenza A viruses. J. Infect. Dis. 187, 1075–1084 (2003).

    Article  PubMed  Google Scholar 

  97. Amyes, E. et al. Characterization of the CD4+ T cell response to Epstein–Barr virus during primary and persistent infection. J. Exp. Med. 198, 903–911 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Callan, M. F. et al. CD8+ T-cell selection, function, and death in the primary immune response in vivo. J. Clin. Invest. 106, 1251–1261 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hillaire, M. L. et al. Characterization of the human CD8+ T cell response following infection with 2009 pandemic influenza H1N1 virus. J. Virol. 85, 12057–12061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008). This study shows the generation of virus-specific effector and memory CD8+ T cell responses in the peripheral blood at sequential time points in humans following yellow fever vaccination.

    Article  CAS  PubMed  Google Scholar 

  101. Jaimes, M. C. et al. Frequencies of virus-specific CD4+ and CD8+ T lymphocytes secreting γ-interferon after acute natural rotavirus infection in children and adults. J. Virol. 76, 4741–4749 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bont, L. et al. Natural reinfection with respiratory syncytial virus does not boost virus-specific T-cell immunity. Pediatr. Res. 52, 363–367 (2002).

    Article  PubMed  Google Scholar 

  103. de Waal, L. et al. Moderate local and systemic respiratory syncytial virus-specific T-cell responses upon mild or subclinical RSV infection. J. Med. Virol. 70, 309–318 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Gonzalez, P. A. et al. Respiratory syncytial virus impairs T cell activation by preventing synapse assembly with dendritic cells. Proc. Natl Acad. Sci. USA 105, 14999–15004 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Reed, J. R. et al. Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo. J. Exp. Med. 199, 1433–1443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vukmanovic-Stejic, M. et al. Varicella zoster-specific CD4+Foxp3+ T cells accumulate after cutaneous antigen challenge in humans. J. Immunol. 190, 977–986 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. de Bree, G. J. et al. Characterization of CD4+ memory T cell responses directed against common respiratory pathogens in peripheral blood and lung. J. Infect. Dis. 195, 1718–1725 (2007).

    Article  PubMed  Google Scholar 

  108. de Bree, G. J. et al. Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung. J. Exp. Med. 202, 1433–1442 (2005). This report describes the initial finding of biased distribution of memory T cells that are specific for a lung pathogen in the lungs compared with in the peripheral blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Piet, B. et al. CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J. Clin. Invest. (2011).

  110. Zhu, J. et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204, 595–603 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Molberg, O. et al. CD4+ T cells with specific reactivity against astrovirus isolated from normal human small intestine. Gastroenterology. 114, 115–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Sewell, A. K. Why must T cells be cross-reactive? Nature Rev. Immunol. 12, 669–677 (2012).

    Article  CAS  Google Scholar 

  113. Lee, L. Y. et al. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J. Clin. Invest. 118, 3478–3490 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Roti, M. et al. Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus. J. Immunol. 180, 1758–1768 (2008). References 113 and 114 show that there is cross-reactivity in memory CD4+ T cells and identifies pre-existing memory T cells that are specific for avian influenza virus in individuals who never were exposed to this virus.

    Article  CAS  PubMed  Google Scholar 

  115. Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. & Davis, M. M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38, 373–383 (2013). This article shows cross-reactivity of virus-specific memory T cells using tetramer enrichment and identifies HIV-specific memory T cells in individuals who were never infected with this virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. D'Orsogna, L. J., Roelen, D. L., Doxiadis, I. I. & Claas, F. H. Alloreactivity from human viral specific memory T-cells. Transpl. Immunol. 23, 149–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Wucherpfennig, K. W. T cell receptor crossreactivity as a general property of T cell recognition. Mol. Immunol. 40, 1009–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Burrows, S. R., Khanna, R., Burrows, J. M. & Moss, D. J. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein–Barr virus CTL epitope: implications for graft-versus-host disease. J. Exp. Med. 179, 1155–1161 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Welsh, R. M. & Selin, L. K. No one is naive: the significance of heterologous T-cell immunity. Nature Rev. Immunol. 2, 417–426 (2002).

    Article  CAS  Google Scholar 

  121. Clute, S. C. et al. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein–Barr virus-associated infectious mononucleosis. J. Clin. Invest. 115, 3602–3612 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Duchmann, R. et al. T cell specificity and cross reactivity towards enterobacteria, Bacteroides, Bifidobacterium, and antigens from resident intestinal flora in humans. Gut 44, 812–818 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hand, T. W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hammarlund, E. et al. Duration of antiviral immunity after smallpox vaccination. Nature Med. 9, 1131–1137 (2003). This study provides direct evidence that human memory T cells that are generated through vaccination are long-lived without repeat antigen exposures.

    Article  PubMed  Google Scholar 

  126. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Bushar, N. D., Corbo, E., Schmidt, M., Maltzman, J. S. & Farber, D. L. Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proc. Natl Acad. Sci. USA 107, 827–831 (2010).

    Article  PubMed  Google Scholar 

  128. Kassiotis, G., Garcia, S., Simpson, E. & Stockinger, B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nature Immunol. 3, 244–250 (2002).

    Article  CAS  Google Scholar 

  129. Kassiotis, G., Gray, D., Kiafard, Z., Zwirner, J. & Stockinger, B. Functional specialization of memory TH cells revealed by expression of integrin CD49b. J. Immunol. 177, 968–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Macallan, D. C. et al. Measurement and modeling of human T cell kinetics. Eur. J. Immunol. 33, 2316–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Macallan, D. C. et al. Rapid turnover of effector-memory CD4+ T cells in healthy humans. J. Exp. Med. 200, 255–260 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. De Boer, R. J. & Perelson, A. S. Quantifying T lymphocyte turnover. J. Theor. Biol. 327, 45–87 (2013). This article contains an interesting mathematical analysis of human T cell proliferation studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vukmanovic-Stejic, M. et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 116, 2423–2433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Weng, N. P., Levine, B. L., June, C. H. & Hodes, R. J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl Acad. Sci. USA 92, 11091–11094 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Weng, N. P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nature Rev. Immunol. 12, 306–315 (2012).

    Article  CAS  Google Scholar 

  136. Miconnet, I. Probing the T-cell receptor repertoire with deep sequencing. Curr. Opin. HIV AIDS. 7, 64–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Youngblood, B., Davis, C. W. & Ahmed, R. Making memories that last a lifetime: heritable functions of self-renewing memory CD8 T cells. Int. Immunol. 22, 797–803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Robins, H. S. et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Robins, H. S. et al. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2, 47ra64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zinkernagel, R. M. Immunological memory not equal protective immunity. Cell. Mol. Life Sci. 69, 1635–1640 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Wilkinson, T. M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nature Med. 18, 274–280 (2012). The authors of this paper carried out a live challenge study using the influenza virus in human subjects and establish that reduced illness correlates with the quantity of circulating influenza virus-specific memory CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  143. Lumsden, J. M. et al. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4 T cells. PLoS ONE. 6, e20775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hansen, S. G. et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340, 1237874 (2013). This study shows that vaccination with CMV-based vectors expressing an HIV Gag protein generates robust effector-memory CD8+ T cell responses that have a remarkably broad specificity to epitopes presented by MHC class I and class II molecules in a non-human primate model.

    Article  CAS  PubMed  Google Scholar 

  145. Hansen, S. G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sallusto, F., Lanzavecchia, A., Araki, K. & Ahmed, R. From vaccines to memory and back. Immunity 33, 451–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Bakker, A. H. & Schumacher, T. N. MHC multimer technology: current status and future prospects. Curr. Opin. Immunol. 17, 428–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Tan, L. C. et al. A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J. Immunol. 162, 1827–1835 (1999).

    CAS  PubMed  Google Scholar 

  151. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Newell, E. W. et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nature Biotech. 31, 623–629 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Thome and D. Turner for a critical review of the manuscript. D.L.F. is supported by US National Institutes of Health grants AI106697, AI100119 and AI083022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Farber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Memory homeostasis

The stable maintenance of memory T cell numbers through multiple mechanisms, including continuous turnover, responses to homeostatic cytokines and non-cognate T cell receptor interactions.

Immunosenescence

The decreased function of the immune system with age. In particular, the number of naive T cells decreases as thymic function decreases.

ELISPOT

(Enzyme-linked immunosorbent spot). An antibody capture-based method for enumerating specific CD4+ and CD8+ T cells that secrete a particular cytokine (often interferon-γ).

MHC tetramer

A method of visualizing antigen-specific T cells by flow cytometry. Typically, four MHC molecules with their associated peptides are held together by streptavidin (that has four binding sites for biotin), which is attached to the tail of the MHC molecule. These four peptide—MHC complexes (tetramers) can bind to peptide-specific T cell receptors. The streptavidin molecules are often labelled with a fluorochrome so that binding can be assessed by flow cytometry.

Telomeres

Regions of highly repetitive DNA at the end of linear eukaryotic chromosomes. They protect the ends of the chromosome from shortening following replication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farber, D., Yudanin, N. & Restifo, N. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 14, 24–35 (2014). https://doi.org/10.1038/nri3567

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing