Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional control of effector and memory CD8+ T cell differentiation

Key Points

  • During an infection, T cells can differentiate into multiple types of effector and memory T cell that help to mediate pathogen clearance and provide long-term protective immunity.

  • Hypothetical models — known as the separate-precursor, decreasing-potential, signal-strength and asymmetric cell fate models — help to explain the generation of heterogeneous effector and memory T cells.

  • The strength and duration of signals 1, 2 and 3 (mediated by antigen, co-stimulatory molecules and cytokines, respectively) can influence effector T cell fate decisions.

  • The expression or activity of counter-regulatory transcription factors functions in a graded manner to regulate effector and memory T cell differentiation. Such transcription factor pairs include: T-bet and eomesodermin; B lymphocyte-induced maturation protein 1 (BLIMP1) and B cell lymphoma 6 (BCL-6); inhibitor of DNA binding 2 (ID2) and ID3; and signal transducer and activator of transcription 3 (STAT3) and STAT4.

  • Cellular metabolic fitness and metabolic signalling pathways — mainly the phosphoinositide 3-kinase (PI3K)–AKT–mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK)–forkhead box O (FOXO) pathways — regulate T cell differentiation, effector function and lifespan.

  • Cytokine signalling and transcriptional programmes control the progressive differentiation or functional maturation of memory T cells during the effector-to-memory cell transition.

  • During chronic infection, phenotypic, functional and transcriptomic diversification of CD8+ T cells occurs over multiple rounds of stimulation.

Abstract

During an infection, T cells can differentiate into multiple types of effector and memory T cells, which help to mediate pathogen clearance and provide long-term protective immunity. These cells can vary in their phenotype, function and location, and in their long-term fate in terms of their ability to populate the memory T cell pool. Over the past decade, the signalling pathways and transcriptional programmes that regulate the formation of heterogeneous populations of effector and memory CD8+ T cells have started to be characterized, and this Review discusses the major advances in these areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetics of a T cell response and distribution of memory cell potential.
Figure 2: Models for generating effector and memory T cell heterogeneity.
Figure 3: Graded activity of transcriptional programmes that control effector and memory T cell differentiation.
Figure 4: Model for the metabolic regulation of effector and memory T cell differentiation.

Similar content being viewed by others

References

  1. Marshall, H. D. et al. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4+ cell properties during viral infection. Immunity 35, 633–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pepper, M., Pagan, A. J., Igyarto, B. Z., Taylor, J. J. & Jenkins, M. K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roman, E. et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J. Exp. Med. 196, 957–968 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    CAS  PubMed  Google Scholar 

  5. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol. 4, 1191–1198 (2003).

    CAS  Google Scholar 

  6. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007). This study shows that pro-inflammatory cytokines (such as IL-12) induce the terminal differentiation of effector CD8+ T cells through the induction of increased T-bet expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Joshi, N. S. & Kaech, S. M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309–1315 (2008).

    CAS  PubMed  Google Scholar 

  8. Sarkar, S. et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205, 625–640 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000).

    CAS  Google Scholar 

  10. Croom, H. A. et al. Memory precursor phenotype of CD8+ T cells reflects early antigenic experience rather than memory numbers in a model of localized acute influenza infection. Eur. J. Immunol. 41, 682–693 (2011).

    CAS  PubMed  Google Scholar 

  11. Obar, J. J. et al. Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation. J. Immunol. 187, 4967–4978 (2011).

    CAS  PubMed  Google Scholar 

  12. Masopust, D., Ha, S. J., Vezys, V. & Ahmed, R. Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J. Immunol. 177, 831–839 (2006).

    CAS  PubMed  Google Scholar 

  13. Nolz, J. C. & Harty, J. T. Protective capacity of memory CD8+ T cells is dictated by antigen exposure history and nature of the infection. Immunity 34, 781–793 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Joshi, N. S. et al. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells. J. Immunol. 187, 4068–4076 (2011).

    CAS  PubMed  Google Scholar 

  15. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS  PubMed  Google Scholar 

  16. Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    CAS  PubMed  Google Scholar 

  18. Wherry, E. J. T cell exhaustion. Nature Immunol. 12, 492–499 (2011).

    CAS  Google Scholar 

  19. Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    CAS  PubMed  Google Scholar 

  20. Stemberger, C. et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).

    CAS  PubMed  Google Scholar 

  21. Gerlach, C. et al. One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med. 207, 1235–1246 (2010). References 20 and 21 provide evidence that a single naive CD8+ T cell can give rise to both terminal effector and memory T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Badovinac, V. P., Messingham, K. A., Jabbari, A., Haring, J. S. & Harty, J. T. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nature Med. 11, 748–756 (2005).

    CAS  PubMed  Google Scholar 

  23. Badovinac, V. P., Porter, B. B. & Harty, J. T. CD8+ T cell contraction is controlled by early inflammation. Nature Immunol. 5, 809–817 (2004).

    CAS  Google Scholar 

  24. D'Souza, W. N. & Hedrick, S. M. Cutting edge: latecomer CD8 T cells are imprinted with a unique differentiation program. J. Immunol. 177, 777–781 (2006).

    CAS  PubMed  Google Scholar 

  25. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nature Rev. Immunol. 2, 982–987 (2002).

    CAS  Google Scholar 

  26. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007). This paper illustrates that memory and effector T cell fates can arise from a single precursor T cell through asymmetric cell division.

    CAS  PubMed  Google Scholar 

  27. Mousavi, S. F. et al. OX40 costimulatory signals potentiate the memory commitment of effector CD8+ T cells. J. Immunol. 181, 5990–6001 (2008).

    CAS  PubMed  Google Scholar 

  28. Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunol. 1, 433–440 (2000).

    CAS  Google Scholar 

  29. Hendriks, J. et al. During viral infection of the respiratory tract, CD27, 4-1BB, and OX40 collectively determine formation of CD8+ memory T cells and their capacity for secondary expansion. J. Immunol. 175, 1665–1676 (2005).

    CAS  PubMed  Google Scholar 

  30. Williams, M. A. & Bevan, M. J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    CAS  PubMed  Google Scholar 

  31. Pulle, G., Vidric, M. & Watts, T. H. IL-15-dependent induction of 4-1BB promotes antigen-independent CD8 memory T cell survival. J. Immunol. 176, 2739–2748 (2006).

    CAS  PubMed  Google Scholar 

  32. Salek-Ardakani, S. et al. The TNFR family members OX40 and CD27 link viral virulence to protective T cell vaccines in mice. J. Clin. Invest. 121, 296–307 (2011).

    CAS  PubMed  Google Scholar 

  33. Mescher, M. F. et al. Signals required for programming effector and memory development by CD8+ T cells. Immunol. Rev. 211, 81–92 (2006).

    CAS  PubMed  Google Scholar 

  34. Curtsinger, J. M., Johnson, C. M. & Mescher, M. F. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J. Immunol. 171, 5165–5171 (2003).

    CAS  PubMed  Google Scholar 

  35. Haring, J. S., Badovinac, V. P., Olson, M. R., Varga, S. M. & Harty, J. T. In vivo generation of pathogen-specific Th1 cells in the absence of the IFN-γ receptor. J. Immunol. 175, 3117–3122 (2005).

    CAS  PubMed  Google Scholar 

  36. Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J. & Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 202, 637–650 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalia, V. et al. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91–103 (2010).

    CAS  PubMed  Google Scholar 

  38. Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010). References 37 and 38 indicate that IL-2-mediated signalling promotes the terminal differentiation of effector CD8+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Whitmire, J. K., Eam, B., Benning, N. & Whitton, J. L. Direct interferon-γ signaling dramatically enhances CD4+ and CD8+ T cell memory. J. Immunol. 179, 1190–1197 (2007).

    CAS  PubMed  Google Scholar 

  40. Whitmire, J. K., Tan, J. T. & Whitton, J. L. Interferon-γ acts directly on CD8+ T cells to increase their abundance during virus infection. J. Exp. Med. 201, 1053–1059 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonilla, W. V. et al. The alarmin interleukin-33 drives protective antiviral CD8 T cell responses. Science 335, 984–989 (2012).

    CAS  PubMed  Google Scholar 

  42. Agarwal, P. et al. Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J. Immunol. 183, 1695–1704 (2009).

    CAS  PubMed  Google Scholar 

  43. Wherry, E. J., Puorro, K. A., Porgador, A. & Eisenlohr, L. C. The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J. Immunol. 163, 3735–3745 (1999).

    CAS  PubMed  Google Scholar 

  44. Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).

    CAS  Google Scholar 

  46. Marzo, A. L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nature Immunol. 6, 793–799 (2005).

    CAS  Google Scholar 

  47. Cui, W., Joshi, N. S., Jiang, A. & Kaech, S. M. Effects of signal 3 during CD8 T cell priming: bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine 27, 2177–2187 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Badovinac, V. P. & Harty, J. T. Manipulating the rate of memory CD8+ T cell generation after acute infection. J. Immunol. 179, 53–63 (2007).

    CAS  PubMed  Google Scholar 

  49. Prlic, M., Hernandez-Hoyos, G. & Bevan, M. J. Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J. Exp. Med. 203, 2135–2143 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pearce, E. L. & Shen, H. Generation of CD8 T cell memory is regulated by IL-12. J. Immunol. 179, 2074–2081 (2007).

    CAS  PubMed  Google Scholar 

  51. Keppler, S. J., Theil, K., Vucikuja, S. & Aichele, P. Effector T-cell differentiation during viral and bacterial infections: role of direct IL-12 signals for cell fate decision of CD8+ T cells. Eur. J. Immunol. 39, 1774–1783 (2009).

    CAS  PubMed  Google Scholar 

  52. Wiesel, M. et al. Type-I IFN drives the differentiation of short-lived effector CD8+ T cells in vivo. Eur. J. Immunol. 42, 320–329 (2012).

    CAS  PubMed  Google Scholar 

  53. Hu, J. K., Kagari, T., Clingan, J. M. & Matloubian, M. Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proc. Natl Acad. Sci. USA 108, e118–e127 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. Kurachi, M. et al. Chemokine receptor CXCR3 facilitates CD8+ T cell differentiation into short-lived effector cells leading to memory degeneration. J. Exp. Med. 208, 1605–1620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kohlmeier, J. E. et al. Inflammatory chemokine receptors regulate CD8+ T cell contraction and memory generation following infection. J. Exp. Med. 208, 1621–1634 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jung, Y. W., Rutishauser, R. L., Joshi, N. S., Haberman, A. M. & Kaech, S. M. Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection. J. Immunol. 185, 5315–5325 (2010).

    CAS  PubMed  Google Scholar 

  57. Kastenmuller, W. et al. Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J. Immunol. 187, 3186–3197 (2011).

    CAS  PubMed  Google Scholar 

  58. Foulds, K. E., Rotte, M. J. & Seder, R. A. IL-10 is required for optimal CD8 T cell memory following Listeria monocytogenes infection. J. Immunol. 177, 2565–2574 (2006).

    CAS  PubMed  Google Scholar 

  59. Sanjabi, S., Mosaheb, M. M. & Flavell, R. A. Opposing effects of TGF-β and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity 31, 131–144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med. 204, 2015–2021 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nature Immunol. 6, 1236–1244 (2005).

    CAS  Google Scholar 

  62. Banerjee, A. et al. Cutting edge: the transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche. J. Immunol. 185, 4988–4992 (2010).

    CAS  PubMed  Google Scholar 

  63. Intlekofer, A. M. et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321, 408–411 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Takemoto, N., Intlekofer, A. M., Northrup, J. T., Wherry, E. J. & Reiner, S. L. Cutting edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J. Immunol. 177, 7515–7519 (2006).

    CAS  PubMed  Google Scholar 

  65. Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and eomesodermin. Immunity 32, 67–78 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rao, R. R., Li, Q., Gubbels Bupp, M. R. & Shrikant, P. A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity 36, 374–387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nature Immunol. 11, 114–120 (2010).

    CAS  Google Scholar 

  70. Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31, 941–952 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gong, D. & Malek, T. R. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J. Immunol. 178, 242–252 (2007).

    CAS  PubMed  Google Scholar 

  72. Rutishauser, R. L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kallies, A., Xin, A., Belz, G. T. & Nutt, S. L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009). References 72–74 collectively demonstrate that BLIMP1 promotes the terminal differentiation or exhaustion of CD8+ T cells in acute and chronic viral infections.

    CAS  PubMed  Google Scholar 

  75. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21–interleukin-10–STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ichii, H. et al. Bcl6 is essential for the generation of long-term memory CD4+ T cells. Int. Immunol. 19, 427–433 (2007).

    CAS  PubMed  Google Scholar 

  77. Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nature Immunol. 3, 558–563 (2002).

    CAS  Google Scholar 

  78. Ichii, H., Sakamoto, A., Kuroda, Y. & Tokuhisa, T. Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J. Immunol. 173, 883–891 (2004).

    CAS  PubMed  Google Scholar 

  79. Oestreich, K. J., Huang, A. C. & Weinmann, A. S. The lineage-defining factors T-bet and Bcl-6 collaborate to regulate Th1 gene expression patterns. J. Exp. Med. 208, 1001–1013 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nature Immunol. 13, 405–411 (2012).

    CAS  Google Scholar 

  81. Ji, Y. et al. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nature Immunol. 12, 1230–1237 (2011).

    CAS  Google Scholar 

  82. Cannarile, M. A. et al. Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nature Immunol. 7, 1317–1325 (2006).

    CAS  Google Scholar 

  83. Yang, C. Y. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nature Immunol. 12, 1221–1229 (2011).

    CAS  Google Scholar 

  84. O'Shea, J. J. & Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36, 542–550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gough, D. J. et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gil, M. P., Salomon, R., Louten, J. & Biron, C. A. Modulation of STAT1 protein levels: a mechanism shaping CD8 T-cell responses in vivo. Blood 107, 987–993 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nguyen, K. B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    CAS  PubMed  Google Scholar 

  90. Xiao, Z., Casey, K. A., Jameson, S. C., Curtsinger, J. M. & Mescher, M. F. Programming for CD8 T cell memory development requires IL-12 or type I IFN. J. Immunol. 182, 2786–2794 (2009).

    CAS  PubMed  Google Scholar 

  91. Lin, J. X. et al. Critical role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 36, 586–599 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Palmer, D. C. & Restifo, N. P. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. 30, 592–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Seki, Y. et al. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc. Natl Acad. Sci. USA 99, 13003–13008 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunol. 12, 295–303 (2011).

    CAS  Google Scholar 

  95. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011). This paper, together with reference 75, demonstrates that cytokine signalling through the STAT3 pathway is required for the functional maturation and maintenance of memory CD8+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, X. P. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature Immunol. 12, 247–254 (2011).

    CAS  Google Scholar 

  97. O'Shea, J. J., Lahesmaa, R., Vahedi, G., Laurence, A. & Kanno, Y. Genomic views of STAT function in CD4+ T helper cell differentiation. Nature Rev. Immunol. 11, 239–250 (2011).

    CAS  Google Scholar 

  98. Weng, N. P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nature Rev. Immunol. 12, 306–315 (2012).

    CAS  Google Scholar 

  99. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nature Rev. Immunol. 12, 325–338 (2012).

    CAS  Google Scholar 

  100. Pearce, E. L. Metabolism in T cell activation and differentiation. Curr. Opin. Immunol. 22, 314–320 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Michalek, R. D. & Rathmell, J. C. The metabolic life and times of a T-cell. Immunol. Rev. 236, 190–202 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Finlay, D. & Cantrell, D. A. Metabolism, migration and memory in cytotoxic T cells. Nature Rev. Immunol. 11, 109–117 (2011).

    CAS  Google Scholar 

  103. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009). References 103 and 104 were the first studies to describe the role of metabolic regulation in the differentiation of memory and effector CD8+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sinclair, L. V. et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature Immunol. 9, 513–521 (2008).

    CAS  Google Scholar 

  106. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    CAS  PubMed  Google Scholar 

  107. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  Google Scholar 

  109. Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Macintyre, A. N. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    CAS  PubMed  Google Scholar 

  112. van Lier, R. A., ten Berge, I. J. & Gamadia, L. E. Human CD8+ T-cell differentiation in response to viruses. Nature Rev. Immunol. 3, 931–939 (2003).

    CAS  Google Scholar 

  113. Xue, H. H. & Zhao, D. M. Regulation of mature T cell responses by the Wnt signaling pathway. Ann. NY Acad. Sci. 1247, 16–33 (2012).

    CAS  PubMed  Google Scholar 

  114. Zhao, D. M. et al. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J. Immunol. 184, 1191–1199 (2010).

    CAS  PubMed  Google Scholar 

  115. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl Acad. Sci. USA 107, 9777–9782 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nature Med. 15, 808–813 (2009).

    CAS  PubMed  Google Scholar 

  117. Jabbari, A. & Harty, J. T. Secondary memory CD8+ T cells are more protective but slower to acquire a central-memory phenotype. J. Exp. Med. 203, 919–932 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wirth, T. C. et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8+ T cell differentiation. Immunity 33, 128–140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wirth, T. C., Martin, M. D., Starbeck-Miller, G., Harty, J. T. & Badovinac, V. P. Secondary CD8+ T-cell responses are controlled by systemic inflammation. Eur. J. Immunol. 41, 1321–1333 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Voehringer, D. et al. Viral infections induce abundant numbers of senescent CD8 T cells. J. Immunol. 167, 4838–4843 (2001).

    CAS  PubMed  Google Scholar 

  121. Vezys, V. et al. Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457, 196–199 (2009).

    CAS  PubMed  Google Scholar 

  122. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  123. Mazo, I. B. et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22, 259–270 (2005).

    CAS  PubMed  Google Scholar 

  124. Kaech, S. M. & Wherry, E. J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sheridan, B. S. & Lefrancois, L. Regional and mucosal memory T cells. Nature Immunol. 12, 485–491 (2011).

    CAS  Google Scholar 

  126. Bouneaud, C., Garcia, Z., Kourilsky, P. & Pannetier, C. Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J. Exp. Med. 201, 579–590 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wherry, E. J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol. 4, 225–234 (2003).

    CAS  Google Scholar 

  129. Marzo, A. L., Yagita, H. & Lefrancois, L. Cutting edge: migration to nonlymphoid tissues results in functional conversion of central to effector memory CD8 T cells. J. Immunol. 179, 36–40 (2007).

    CAS  PubMed  Google Scholar 

  130. Teijaro, J. R. et al. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    CAS  PubMed  Google Scholar 

  131. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

    CAS  PubMed  Google Scholar 

  134. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med. 204, 941–949 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  PubMed  Google Scholar 

  137. Kao, C. et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nature Immunol. 12, 663–671 (2011).

    CAS  Google Scholar 

  138. Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nature Med. 16, 1147–1151 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Kaech laboratory for helpful comments and discussions. This work was supported by grants to S.M.K. from the US National Institutes of Health (grants R01AI074699, RO1AI066232, R21AI097767 and R21AI081150) and from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Kaech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Susan M. Kaech's homepage

Glossary

Type 1 responses

Coordinated immune responses that occur following viral or intracellular bacterial infection. They are usually characterized by the rapid induction of innate cytokines such as interleukin-12 and interferons and the development of T helper 1 (TH1) cells and cytotoxic T cells.

T follicular helper cells

(TFH cells). A distinct subset of CD4+ helper T cells that are CXCR5hiPD1hi. These cells primarily migrate into germinal centres following immunization, where they regulate the development of antigen-specific B cell immune responses.

Central memory T cells

(TCM cells). A subset of memory T cells that are normally CD62LhiCCR7hi and that home to the secondary lymphoid organs.

Effector memory T cells

(TEM cells). A subset of memory T cells that are normally CD62LlowCCR7low and that reside in non-lymphoid tissues.

Cellular barcoding

A tool for clonal analysis. Retroviral vectors with random sequences (that are referred to as 'barcodes') are transduced into progenitor cells. On integration, each vector introduces a unique, identifiable and heritable mark into the host cell genome, allowing the clonal progeny of each cell to be tracked over time.

Asymmetric cell division

A process that produces two daughter cells with different cellular fates. This is in contrast to symmetric cell division, which gives rise to daughter cells of equivalent fates.

T-box transcription factors

A family of transcription factors characterized by their homologous T-box DNA-binding domain.

Mammalian target of rapamycin

(mTOR). A serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis and transcription. mTOR belongs to the phosphoinositide 3-kinase (PI3K)-related kinase protein family. The PI3K–AKT–mTOR pathway is activated by T cell receptor signalling and sustained by pro-inflammatory cytokines such as IL-2 and IL-12.

WNT

A family of glycoproteins related to the Drosophila melanogaster protein Wingless, a ligand that regulates the temporal and spatial development of the embryo. WNT-mediated signalling has been shown to regulate cell fate determination, proliferation, adhesion, migration and polarity during development. In addition to their crucial role in embryogenesis, WNT proteins and their downstream signalling molecules have been implicated in tumorigenesis and have causative roles in human colon cancers. WNT signalling activates TCF and LEF family transcription factors by stabilizing their co-activator, β-catenin, and mobilizing this factor from the cytoplasm to the nucleus.

E protein transcription factors

Key transcriptional regulators that control many aspects of lymphocyte development. E proteins bind as homodimers or heterodimers to DNA at their canonical E box sites, where they function as transcriptional activators or repressors. There are four E proteins in mammals, namely E47, E12, HEB and E2-2.

JAK–STAT signalling

A signalling pathway that transmits information from cell-surface receptors for specific chemical signals outside the cell to gene promoters in the DNA in the cell nucleus, which causes DNA transcription and activity in the cell.

Hyper-IgE syndrome

(Also known as Job's syndrome). A heterogeneous group of immune disorders caused by autosomal dominant mutation of STAT3. It is characterized by recurrent infections and very high concentrations of the serum antibody IgE.

mTORC1

(mTOR complex 1). A complex composed of mTOR, regulatory associated protein of mTOR (RAPTOR), LST8 (also known as GβL), RAS40 and DEPTOR. This complex is characterized by the classic features of mTOR, in that it functions as a nutrient, energy and redox sensor and controls protein synthesis.

mTORC2

(mTOR complex 2). A complex composed of mTOR, rapamycin-insensitive companion of mTOR (RICTOR), LST8 and SAPK-interacting protein 1 (SIN1). mTORC2 phosphorylates the serine/threonine protein kinase AKT at a serine residue (S473). mTORC2 has also been shown to function as an important regulator of the cytoskeleton.

Hayflick limit

The number of times that a normal cell population will divide before it stops and enters a phase of senescence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaech, S., Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol 12, 749–761 (2012). https://doi.org/10.1038/nri3307

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3307

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology